323,516 research outputs found

    Perceptual and electrophysiological masking of the auditory brainstem response : a thesis presented in partial fulfilment of the requirements for the degree of Master of Arts in Psychology at Massey University

    Get PDF
    Effective masking levels of the auditory brainstem response (ABR) to tonepips were established on 10 normal-hearing subjects at 500, 1000, 2000 and 4000 Hz, using white noise. Effective masking levels of perceptual responses to the same stimuli were also established, for both presentation of single (1/second) and repeated (41.7/second) tonepips. Perceptual masking levels for repeated tonepips were significantly higher than levels for single tonepips, indicating temporal summation effects. Levels which effectively masked the ABR did not differ significantly from perceptual masking levels at either presentation rate. A signal-to-noise ratio of -5 to -10 dB was found to provide effective masking for all conditions. For the stimulus and recording parameters in the present study, a behavioural method of determining effective masking levels is considered appropriate. Behavioural thresholds determined for single tonepips were higher than thresholds for repeated tonepips, demonstrating dependence of nHL behavioural references for ABR thresholds on stimulus repetition rate. Effective masking levels determined in the present study may be applied to the use of tonepip ABRs to provide an objective frequency-specific measure of hearing in infants

    Combining simultaneous with temporal masking

    Get PDF
    Simultaneous and temporal masking are two frequently used techniques in psychology and vision science. Although there are many studies and theories related to each masking technique, there are no systematic investigations of their mutual relationship, even though both techniques are often applied together. Here, the authors show that temporal masking can both undo and enhance the deteriorating effects of simultaneous masking depending on the stimulus onset asynchrony between the simultaneous and temporal masks. For the task and stimuli used in this study, temporal masking was largely unaffected by the properties of the simultaneous mask. In contrast, simultaneous masking seems to depend strongly on spatial grouping and was strongly affected by the properties of the temporal mask. These findings help to identify the nature of both temporal and simultaneous masking and promote understanding of the role of spatial and temporal grouping in visual perception

    Mathematical Estimation of Logical Masking Capability of Majority/Minority Gates Used in Nanoelectronic Circuits

    Full text link
    In nanoelectronic circuit synthesis, the majority gate and the inverter form the basic combinational logic primitives. This paper deduces the mathematical formulae to estimate the logical masking capability of majority gates, which are used extensively in nanoelectronic digital circuit synthesis. The mathematical formulae derived to evaluate the logical masking capability of majority gates holds well for minority gates, and a comparison with the logical masking capability of conventional gates such as NOT, AND/NAND, OR/NOR, and XOR/XNOR is provided. It is inferred from this research work that the logical masking capability of majority/minority gates is similar to that of XOR/XNOR gates, and with an increase of fan-in the logical masking capability of majority/minority gates also increases

    Deterministic versus probabilistic quantum information masking

    Full text link
    We investigate quantum information masking for arbitrary dimensional quantum states. We show that mutually orthogonal quantum states can always be served for deterministic masking of quantum information. We further construct a probabilistic masking machine for linearly independent states. It is shown that a set of d dimensional states, {a1A,ta2A,,anA}\{ |a_1 \rangle_A, |t a_2 \rangle_A, \dots, |a_n \rangle_A \}, ndn \leq d, can be probabilistically masked by a general unitary-reduction operation if they are linearly independent. The maximal successful probability of probabilistic masking is analyzed and derived for the case of two initial states.Comment: 5 pages, 1 figure

    A Close Companion Search Around L Dwarfs Using Aperture Masking Interferometry and Palomar Laser Guide Star Adaptive Optics

    Get PDF
    We present a close companion search around 16 known early L dwarfs using aperture masking interferometry with Palomar laser guide star adaptive optics (LGS AO). The use of aperture masking allows the detection of close binaries, corresponding to projected physical separations of 0.6-10.0 AU for the targets of our survey. This survey achieved median contrast limits of ΔK ~ 2.3 for separations between 1.2λ/D-4λ/D and ΔK ~ 1.4 at 2/3λ/D. We present four candidate binaries detected with moderate-to-high confidence (90%-98%). Two have projected physical separations less than 1.5 AU. This may indicate that tight-separation binaries contribute more significantly to the binary fraction than currently assumed, consistent with spectroscopic and photometric overluminosity studies. Ten targets of this survey have previously been observed with the Hubble Space Telescope as part of companion searches. We use the increased resolution of aperture masking to search for close or dim companions that would be obscured by full aperture imaging, finding two candidate binaries. This survey is the first application of aperture masking with LGS AO at Palomar. Several new techniques for the analysis of aperture masking data in the low signal-to-noise regime are explored

    Masking device Patent

    Get PDF
    Reusable masking boot for chemical machining operation

    Twisted multifilament superconductor

    Get PDF
    Masking selected portions of a ribbon and forming an intermetallic compound on the unmasked portions by a controlled diffusion reaction produces a twisted filamentary structure. The masking material prohibits the formation of superconductive material on predetermined areas of the substrate

    Saccades influence the visibility of targets in rapid stimulus sequences: the roles of mislocalization, retinal distance and remapping

    Get PDF
    Briefly presented targets around the time of a saccade are mislocalized towards the saccadic landing point. This has been taken as evidence for a remapping mechanism that accompanies each eye movement, helping maintain visual stability across large retinal shifts. Previous studies have shown that spatial mislocalization is greatly diminished when trains of brief stimuli are presented at a high frequency rate, which might help to explain why mislocalization is rarely perceived in everyday viewing. Studies in the laboratory have shown that mislocalization can reduce metacontrast masking by causing target stimuli in a masking sequence to be perceived as shifted in space towards the saccadic target and thus more easily discriminated. We investigated the influence of saccades on target discrimination when target and masks were presented in a rapid serial visual presentation (RSVP), as well as with forward masking and with backward masking. In a series of experiments, we found that performance was influenced by the retinal displacement caused by the saccade itself but that an additional component of un-masking occurred even when the retinal location of target and mask was matched. These results speak in favor of a remapping mechanism that begins before the eyes start moving and continues well beyond saccadic termination

    INVESTIGATING THE ROLES OF MECHANORECEPTIVE CHANNELS IN TACTILE APPARENT MOTION PERCEPTION: A VIBROTACTILE STUDY

    Get PDF
    Tactile apparent motion (TAM) is a perceptual phenomenon in which consecutive presentation of multiple tactile stimuli creates an illusion of motion. Employing a novel tactile display device, the Latero, allowed us to investigate this. The current study focused on the Rapidly Adapting (RA) channel and Slowly Adapting I (SAI) channel on the index finger. The experiment implemented vibrotactile masking stimuli to target the mechanoreceptive channels with the goal of gaining better insight into the involvement of mechanoreceptive channels in the perception of TAM. Masking stimuli were used because previous studies have used them to differentiate between different channels; a certain masking stimulus will impact a mechanoreceptive channel more than others. The experiment began by measuring participants’ threshold for TAM stimuli by varying the stimulus intensity in a two-choice task (left vs right); participants received test trials consisting of TAM stimuli with 25 Hz and 6 Hz testing for the RA and SAI channels, respectively. Next, participants performed a series of test trials with vibrotactile masking stimuli that preceded the TAM stimuli mentioned above. The vibrotactile masking stimulus varied in duration (4 seconds vs 8 seconds) and intensity (two times vs three times the intensity of the TAM stimuli). The results suggest that there was no difference in accuracy when testing for the RA and SAI channels. The results also showed that the introduction of the masking stimuli significantly lowered accuracy. Overall, neither the RA nor the SAI channel may be uniquely involved in TAM perception. However, further improvement on the current design may aid in isolating each channel to help better understand the channel’s role in TAM perception
    corecore