3,807 research outputs found

    Design thinking in the third sector: a study applied to social projects

    Get PDF
    This Master's dissertation aims to investigate the contribution of design thinking in the context of social projects in the Third Sector. In order to discuss and propose actions mediated by this innovative tool, the dissertation will consist of two parts: the theoretical analysis of methodologies and methods, and a case study. The case study analysis intends to reveal opportunities to use design thinking methodology in a social project of the Third Sector, and possible increase engagement with the community, range and impact. For such purpose, this dissertation presents a qualitative exploratory approach, which includes a literature review, offering theoretical support for the object of study; a complementary phase with interviews, document analysis and questionnaires; a case study with a Third Sector Organization -­‐ the Scouts of Brazil -­‐ to verify the contribution of design thinking methodology into social projects and the proposal of a new process, based in the methodologies of design and innovation for projects made by this sector

    Bio-inspired multi-agent systems for reconfigurable manufacturing systems

    Get PDF
    The current market’s demand for customization and responsiveness is a major challenge for producing intelligent, adaptive manufacturing systems. The Multi-Agent System (MAS) paradigm offers an alternative way to design this kind of system based on decentralized control using distributed, autonomous agents, thus replacing the traditional centralized control approach. The MAS solutions provide modularity, flexibility and robustness, thus addressing the responsiveness property, but usually do not consider true adaptation and re-configuration. Understanding how, in nature, complex things are performed in a simple and effective way allows us to mimic nature’s insights and develop powerful adaptive systems that able to evolve, thus dealing with the current challenges imposed on manufactur- ing systems. The paper provides an overview of some of the principles found in nature and biology and analyses the effectiveness of bio-inspired methods, which are used to enhance multi-agent systems to solve complex engineering problems, especially in the manufacturing field. An industrial automation case study is used to illustrate a bio-inspired method based on potential fields to dynamically route pallets

    An adaptive communication model for mobile agents in highly dynamic networks based on forming flexible regions via swarming behabiour

    Get PDF
    Im letzten Jahrzehnt gilt die mobile Agententechnologie als eines der wichtigsten Forschungsgebiete der Informatik. Mobile Agenten sind Software, die AuftrĂ€ge im Namen ihrer Besitzer erfĂŒllen können (ZK02). Mobile Agenten können selbstbestimmend von Server zu Server migrieren, sie können ihren Arbeitsstand speichern und dann ihre Arbeit am neuen Aufenthaltsort fortsetzen. Ihre wichtigsten Merkmale sind: autonom, reaktiv, opportunistisch und zielgerichtet. Diese genannten Merkmale sind fĂŒr verteilte Anwendungen geeignet, z. B: Ressourcenverteilung (TYI99), Netzwerkmanagement (MT99), E-Commerce (BGP05), FernĂŒberwachung CMCV02), Gesundheitssysteme (Mor06), um nur einige zu nennen. Es ist die MobilitĂ€t der Agenten, die mobile Agenten zu einer guten Computing Technologie macht (Pau02). Kommunikation ist wesentlich in verteilten Systemen, und dies gilt auch fĂŒr mobile Agentensysteme (LHL02). Neben den eher technischen Aspekten mobiler Agententechnologien, wie Migration (Bra03) und Kontrollmechanismen (Bau00), wurde die Kommunikation zwischen den Agenten als eine der wichtigsten Komponenten in der mobilen Agententechnologie identifiziert (FLP98). Es ist diskutiert worden, ob Agentenkommunikation ausschließlich lokal sein sollte, angesichts der Tatsache, dass mobile Agenten erfunden wurden, weil man die Verarbeitung zu den Daten tragen möchte, anstatt umgekehrt (SS97). Allerdings hat es sich gezeigt, dass es in vielen FĂ€llen lohnt, wenn die mobilen Agenten kommunizieren anstatt migrieren (BHR+97),(FLP98),(ea02). Kommunikation hilft mobilen Agenten, eine bessere Leistung zu erreichen (Erf04). Kommunikation ist daher aus unserer Sicht die Basis mobiler Agentensysteme. An der Friedrich-Schiller-UniversitĂ€t Jena ist das interdisziplinĂ€re Projekt SpeedUp seit April 2009 durchgefĂŒhrt worden (FSU11). Das Projekt entwickelt ein UnterstĂŒtzungssystem fĂŒr Rettungs- und EinsatzkrĂ€fte bei einem Massenanfall von Verletzten (MANV). Im Projekt ist das Konzept mobiler Agenten als eine der Basistechnologien ausgesucht worden. Die hohe Netzwerkdynamik stellt neue Herausforderungen fĂŒr mobile Agentensysteme dar, die in MANV Rettungsszenarien arbeiten. Es wird erwartet, dass die Kommunikation sich an die dynamische Umgebung zur AusfĂŒhrungszeit anpassen kann. Dazu fehlen heute tragfĂ€hige Konzepte. In dieser Arbeit wird daher ein Ansatz zur adaptiven Kommunikation mobiler Agenten in hochdynamischen Netzwerken des SpeedUp-Typs vorgestellt. Nach unserer Beurteilung sollte die Kommunikation zwischen den mobilen Agenten nicht nur InteroperabilitĂ€t und StandortunabhĂ€ngigkeit, sondern auch AnpassungsfĂ€higkeit aufweisen. Wir schlagen ein Kommunikationsmodell vor, das sich auf den koordinierenden Aspekt und das Zusammenspiel der Agenten konzentriert, sowie die ZuverlĂ€ssigkeit und die Fehlertoleranz unterstĂŒtzt. Um die Netzwerkdynamik zu managen, planen wir einen selbstorganisierten Mechanismus zu verwenden, der sich ”honey bee” inspiriertes Verfahren nennt. Wir werden dazu eine Software fĂŒr ein adaptives Kommunikationsmodell mobiler Agenten, basierend auf das mobile Agentensystem Ellipsis gestalten, implementieren, und evaluieren.In the last decade, mobile agent technology has been considered as one of the most active research fields in computer science. Mobile agents are software agents which run on behalf of their owner to fulfil jobs that have been ordered (ZK02). They have the ability to migrate from location to location in the network, they can temporarily save their work state at the time of migrating and then restore their tasks when arriving at the new location. Their outstanding characteristics are to be autonomous, reactive, opportunistic, and goal-oriented. Those characteristics are suitable for distributed applications, such as resource allocation (TYI99), network management (MT99), remote supervision (CMCV02), e-commerce (BGP05), health care systems (Mor06), to name but a few. It is the mobility of mobile agents that makes them to be a powerful computing technique, especially for pervasive computing (Pau02). Communication is an essential component of distributed systems and this is no exception for multiagent systems (LHL02). Besides technical aspects of mobile agent technology, such as migrations (Bra03) and control mechanisms (Bau00), communication between mobile agents has been identified as an important issue in mobile agent technology (FLP98). It has been argued whether agent communication should be remote or restricted to local, considering that the main reason for the birth of mobile agents was to move computation to the data instead of moving the data to the computation. Therefore, remote communication could be avoided completely (SS97). However, it has been shown that in many cases mobile agent systems can benefit from performing communication instead of sending agents to remote platforms (BHR+97),(FLP98),(ea02). The communication between agents helps to increase the chance that an agent attains its objectives (Erf04). Communication is one of the bases of multi-agent systems; it is difficult, if not impossible for a group of agents to solve tasks without communication (Hel03). At Friedrich Schiller University Jena, an interdisciplinary project, named SpeedUp, for the support of handling mass casualty incidents (MCI) has been in development since April 2009 (FSU11). In the project the mobile agent concept has been selected as one of the main technologies on the communication infrastructure level. The dynamic nature of MCI networks poses new challenges to mobile systems working in a rescue scenario. For mobile agent systems working in highly dynamic networks, communication between mobile agents is expected to adapt easily to environmental stimuli which occur at execution time. Much research has been done into the design of an appropriate, highly flexible model for mobile agent communication in dynamic networks. However, to the best of our knowledge none of the suggested solutions has been able to achieve the necessary performance and quality attributes to count as a practical solution. In most cases, these existing approaches seem to neglect the inherent dynamics of modern networks. In this dissertation, we present our approach for an adaptive communication model for mobile agent systems in highly dynamic networks of the SpeedUp type. In our opinion, communication in mobile agent systems should deal not only with interoperability and location-transparency, but also with adaptability. To achieve industrial strength, we propose a model for agent communication that focuses on the cooperation aspect of agent interaction and supports reliability and fault tolerance as the key qualities, while keeping up an acceptable overall performance at the same time. For the management of highly dynamic communication domains we use a self-organizing mechanism, a so-called honey bee inspired algorithm. In order to ensure message delivery, we propose a resilient mechanism for the management of a mobile agent’s location. Based on this thesis, we will design, implement and evaluate a software prototype for an adaptive model for mobile agent communication based on the Ellipsis mobile agent system

    Modeling human and organizational behavior using a relation-centric multi-agent system design paradigm

    Get PDF
    Today's modeling and simulation communities are being challenged to create rich, detailed models incorporating human decision-making and organizational behavior. Recent advances in distributed artificial intelligence and complex systems theory have demonstrated that such ill-defined problems can be effectively modeled with agent-based simulation techniques using multiple, autonomoous, adaptive entities. RELATE, a relation-centric design paradigm for multi-agent systems (MAS), is presented to assist developers incorporate MAS solutions into their simulations. RELATe focuses the designer on six key concepts of MAS simulations: relationships, environment, laws, agents, things, and effectors. A library of Java classes is presented which enables the user to rapidly prototype an agent-based simulation. This library utilizes the Java programming language to support cross-platform and web based designs. All Java classes and interfaces are fully documented using HTML Javadoc format. Two reference cases are provided that allow for easy code reuse and modification. Finally, an existing metworked DIS-Java-VRML simulation was modified to demonstrate the ability to utilize the RELATE library to add agents to existing applications. LCDR Kim Roddy focused on the development and refinement of the RELATE design paradigm, while LT Mike Dickson focused on the actual Java implementation. Joint work was conducted on all research and reference caseshttp://www.archive.org/details/modelinghumanorg00roddU.S. Navy (U.S.N.) author

    Swarm Intelligence

    Get PDF
    Swarm Intelligence has emerged as one of the most studied artificial intelligence branches during the last decade, constituting the fastest growing stream in the bio-inspired computation community. A clear trend can be deduced analyzing some of the most renowned scientific databases available, showing that the interest aroused by this branch has increased at a notable pace in the last years. This book describes the prominent theories and recent developments of Swarm Intelligence methods, and their application in all fields covered by engineering. This book unleashes a great opportunity for researchers, lecturers, and practitioners interested in Swarm Intelligence, optimization problems, and artificial intelligence

    MLFC: From 10 to 50 Planners in the Multi-Agent Programming Contest

    Get PDF
    In this paper, we describe the strategies used by our team, MLFC, that led us to achieve the 2nd place in the 15th edition of the Multi-Agent Programming Contest. The scenario used in the contest is an extension of the previous edition (14th ) “Agents Assemble” wherein two teams of agents move around a 2D grid and compete to assemble complex block structures. We discuss the languages and tools used during the development of our team. Then, we summarise the main strategies that were carried over from our previous participation in the 14th edition and list the limitations (if any) of using these strategies in the latest contest edition. We also developed new strategies that were made specifically for the extended scenario: cartography (determining the size of the map); formal verification of the map merging protocol (to provide assurances that it works when increasing the number of agents); plan cache (efficiently scaling the number of planners); task achievement (forming groups of agents to achieve tasks); and bullies (agents that focus on stopping agents from the opposing team). Finally, we give a brief overview of our performance in the contest and discuss what we believe were our shortcomings

    Reflective habitus and crises of the field: status quo vs reform in Muhammadiyah in post-1998 Indonesia

    Get PDF
    This dissertation aims to explain how support for both maintaining the status quo and promoting reform emerged in post-1998 Muhammadiyah, and what caused these tendencies to emerge. To do this, I employ Pierre Bourdieu’s concepts of habitus, field and crisis, and use the methods of content analysis and active interview. I conclude by arguing that these two opposite tendencies emerge from the same reflective predisposition, and are responses to two different perceptions of the West
    • 

    corecore