16 research outputs found

    MAP Estimation for Hyperspectral Image Resolution Enhancement Using an Auxiliary Sensor

    Get PDF
    This paper presents a novel maximum a posteriori (MAP) estimator for enhancing the spatial resolution of an image using co-registered high spatial-resolution imagery from an auxiliary sensor. Here we focus on the use of high-resolution panchomatic data to enhance hyperspectral imagery. However, the estimation framework developed allows for any number of spectral bands in the primary and auxiliary image. The proposed technique is suitable for applications where some correlation, either localized or global, exists between the auxiliary image and the image being enhanced. To exploit localized correlations, a spatially varying statistical model, based on vector quantization, is used. Another important aspect of the proposed algorithm is that it allows for the use of an accurate observation model relating the “true” scene with the low-resolutions observations. Experimental results with hyperspectral data derived from the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) are presented to demonstrate the efficacy of the proposed estimator

    A Bayesian fusion model for space-time reconstruction of finely resolved velocities in turbulent flows from low resolution measurements

    Full text link
    The study of turbulent flows calls for measurements with high resolution both in space and in time. We propose a new approach to reconstruct High-Temporal-High-Spatial resolution velocity fields by combining two sources of information that are well-resolved either in space or in time, the Low-Temporal-High-Spatial (LTHS) and the High-Temporal-Low-Spatial (HTLS) resolution measurements. In the framework of co-conception between sensing and data post-processing, this work extensively investigates a Bayesian reconstruction approach using a simulated database. A Bayesian fusion model is developed to solve the inverse problem of data reconstruction. The model uses a Maximum A Posteriori estimate, which yields the most probable field knowing the measurements. The DNS of a wall-bounded turbulent flow at moderate Reynolds number is used to validate and assess the performances of the present approach. Low resolution measurements are subsampled in time and space from the fully resolved data. Reconstructed velocities are compared to the reference DNS to estimate the reconstruction errors. The model is compared to other conventional methods such as Linear Stochastic Estimation and cubic spline interpolation. Results show the superior accuracy of the proposed method in all configurations. Further investigations of model performances on various range of scales demonstrate its robustness. Numerical experiments also permit to estimate the expected maximum information level corresponding to limitations of experimental instruments.Comment: 15 pages, 6 figure

    Super-Resolution for Hyperspectral and Multispectral Image Fusion Accounting for Seasonal Spectral Variability

    Full text link
    Image fusion combines data from different heterogeneous sources to obtain more precise information about an underlying scene. Hyperspectral-multispectral (HS-MS) image fusion is currently attracting great interest in remote sensing since it allows the generation of high spatial resolution HS images, circumventing the main limitation of this imaging modality. Existing HS-MS fusion algorithms, however, neglect the spectral variability often existing between images acquired at different time instants. This time difference causes variations in spectral signatures of the underlying constituent materials due to different acquisition and seasonal conditions. This paper introduces a novel HS-MS image fusion strategy that combines an unmixing-based formulation with an explicit parametric model for typical spectral variability between the two images. Simulations with synthetic and real data show that the proposed strategy leads to a significant performance improvement under spectral variability and state-of-the-art performance otherwise

    Fusing Multiple Multiband Images

    Full text link
    We consider the problem of fusing an arbitrary number of multiband, i.e., panchromatic, multispectral, or hyperspectral, images belonging to the same scene. We use the well-known forward observation and linear mixture models with Gaussian perturbations to formulate the maximum-likelihood estimator of the endmember abundance matrix of the fused image. We calculate the Fisher information matrix for this estimator and examine the conditions for the uniqueness of the estimator. We use a vector total-variation penalty term together with nonnegativity and sum-to-one constraints on the endmember abundances to regularize the derived maximum-likelihood estimation problem. The regularization facilitates exploiting the prior knowledge that natural images are mostly composed of piecewise smooth regions with limited abrupt changes, i.e., edges, as well as coping with potential ill-posedness of the fusion problem. We solve the resultant convex optimization problem using the alternating direction method of multipliers. We utilize the circular convolution theorem in conjunction with the fast Fourier transform to alleviate the computational complexity of the proposed algorithm. Experiments with multiband images constructed from real hyperspectral datasets reveal the superior performance of the proposed algorithm in comparison with the state-of-the-art algorithms, which need to be used in tandem to fuse more than two multiband images

    Bayesian Fusion of Multi-Band Images -Complementary results and supporting materials

    Get PDF
    Abstract In this paper, a Bayesian fusion technique for remotely sensed multi-band images is presented. The observed images are related to the high spectral and high spatial resolution image to be recovered through physical degradations, e.g., spatial and spectral blurring and/or subsampling defined by the sensor characteristics. The fusion problem is formulated within a Bayesian estimation framework. An appropriate prior distribution exploiting geometrical consideration is introduced. To compute the Bayesian estimator of the scene of interest from its posterior distribution, a Markov chain Monte Carlo algorithm is designed to generate samples asymptotically distributed according to the target distribution. To efficiently sample from this high-dimension distribution, a Hamiltonian Monte Carlo step is introduced in the Gibbs sampling strategy. The efficiency of the proposed fusion method is evaluated with respect to several state-of-the-art fusion techniques. In particular, low spatial resolution hyperspectral and multispectral images are fused to produce a high spatial resolution hyperspectral image. Index Terms Part of this work has been supported by the Hypanema ANR Project
    corecore