6 research outputs found

    A comparison of methods to determine neuronal phase-response curves

    Get PDF
    The phase-response curve (PRC) is an important tool to determine the excitability type of single neurons which reveals consequences for their synchronizing properties. We review five methods to compute the PRC from both model data and experimental data and compare the numerically obtained results from each method. The main difference between the methods lies in the reliability which is influenced by the fluctuations in the spiking data and the number of spikes available for analysis. We discuss the significance of our results and provide guidelines to choose the best method based on the available data.Comment: PDFLatex, 16 pages, 7 figures

    A New Approach for Determining Phase Response Curves Reveals that Purkinje Cells Can Act as Perfect Integrators

    Get PDF
    Cerebellar Purkinje cells display complex intrinsic dynamics. They fire spontaneously, exhibit bistability, and via mutual network interactions are involved in the generation of high frequency oscillations and travelling waves of activity. To probe the dynamical properties of Purkinje cells we measured their phase response curves (PRCs). PRCs quantify the change in spike phase caused by a stimulus as a function of its temporal position within the interspike interval, and are widely used to predict neuronal responses to more complex stimulus patterns. Significant variability in the interspike interval during spontaneous firing can lead to PRCs with a low signal-to-noise ratio, requiring averaging over thousands of trials. We show using electrophysiological experiments and simulations that the PRC calculated in the traditional way by sampling the interspike interval with brief current pulses is biased. We introduce a corrected approach for calculating PRCs which eliminates this bias. Using our new approach, we show that Purkinje cell PRCs change qualitatively depending on the firing frequency of the cell. At high firing rates, Purkinje cells exhibit single-peaked, or monophasic PRCs. Surprisingly, at low firing rates, Purkinje cell PRCs are largely independent of phase, resembling PRCs of ideal non-leaky integrate-and-fire neurons. These results indicate that Purkinje cells can act as perfect integrators at low firing rates, and that the integration mode of Purkinje cells depends on their firing rate

    A Consistent Definition of Phase Resetting Using Hilbert Transform

    Get PDF

    Using Phase Response Curves to Optimize Deep Brain Stimulation

    Get PDF
    University of Minnesota Ph.D. dissertation. April 2016. Major: Neuroscience. Advisor: Theoden Netoff. 1 computer file (PDF); vii, 190 pages.Deep brain stimulation (DBS) is a neuromodulation therapy effective at treating motor symptoms of patients with Parkinson’s disease (PD). Currently, an open-loop approach is used to set stimulus parameters, where stimulation settings are programmed by a clinician using a time intensive trial-and-error process. There is a need for a systematic approach to tuning stimulation parameters based on a patient’s physiology. An effective biomarker in the recorded neural signal is needed for this approach. It is hypothesized that DBS may work by disrupting enhanced oscillatory activity seen in PD. In this thesis I propose and provide evidence for using a simple measure, called a phase response curve, to systematically tune stimulation parameters and develop novel approaches to stimulation to suppress pathological oscillations. In this work I show that PRCs can be used to optimize stimulus frequency, waveform, and stimulus phase to disrupt a pathological oscillation in a computational model of Parkinson’s disease and/or to disrupt entrainment of single neurons in vitro. This approach has the potential to improve efficacy and reduce post-operative programming time
    corecore