3,226,660 research outputs found

    Accuracy of magnetic resonance imaging to identify pseudocapsule invasion in renal tumors

    Get PDF
    Purpose: To evaluate accuracy of MRI in detecting renal tumor pseudocapsule (PC) invasion and to propose a classification based on imaging of PC status in patients with renal cell carcinoma. Methods: From January 2017 to June 2018, 58 consecutive patients with localized renal cell carcinoma were prospectively enrolled. MRI was performed preoperatively and PC was classified, according to its features, as follows: MRI-Cap 0 (absence of PC), MRI-Cap 1 (presence of a clearly identifiable PC), MRI-Cap 2 (focally interrupted PC), and MRI-Cap 3 (clearly interrupted and infiltrated PC). A 3D image reconstruction showing MRI-Cap score was provided to both surgeon and pathologist to obtain complete preoperative evaluation and to compare imaging and pathology reports. All patients underwent laparoscopic partial nephrectomy. In surgical specimens, PC was classified according to the renal tumor capsule invasion scoring system (i-Cap). Results: A concordance between MRI-Cap and i-Cap was found in 50/58 (86%) cases. ρ coefficient for each MRI-cap and iCap categories was: MRI-Cap 0: 0.89 (p < 0.0001), MRI-Cap1: 0.75 (p < 0.0001), MRI-Cap 2: 0.76 (p < 0.0001), and MRI-Cap3: 0.87 (p < 0.0001). Sensitivity, specificity, positive predictive value, negative predictive value, and AUC were: MRI-Cap 0: Se 97.87% Spec 83.3%, PPV 95.8%, NPV 90.9%, and AUC 90.9; MRI-Cap 1: Se 77% Spec 95.5%, PPV 83.3%, NPV 93.5%, and AUC 0.86; MRI-Cap 2- iCap 2: Se 88% Spec 90%, PPV 79%, NPV 95%, and AUC 0.89; MRI-Cap 3: Se 94% Spec 95%, PPV 88%, NPV 97%, and AUC 0.94. Conclusions: MRI-Cap classification is accurate in evaluating renal tumor PC features. PC features can provide an imaging-guided landmark to figure out where a minimal margin could be preferable during nephron-sparing surgery

    Floquet Energies and Quantum Hall Effect in a Periodic Potential

    Full text link
    The Quantum Hall Effect for free electrons in external periodic field is discussed without using the linear response approximation. We find that the Hall conductivity is related in a simple way to Floquet energies (associated to the Schroedinger equation in the co-moving frame). By this relation one can analyze the dependence of the Hall conductivity from the electric field. Sub-bands can be introduced by the time average of the expectation value of the Hamiltonian on the Floquet states. Moreover we prove previous results in form of sum rules as, for instance: the topological character of the Hall conductivity (being an integer multiple of e^2/h), the Diofantine equation which constrains the Hall conductivity by the rational number which measures the flux of the magnetic field through the periodicity cell. The Schroedinger equation fixes in a natural way the phase of the wave function over the reduced Brillouin zone: thus the topological invariant providing the Hall conductivity can be evaluated numerically without ambiguity.Comment: LaTex (revtex), 18 pages, 10 figures in .eps using epsf.sty. Changes in eq. (3.2). References adde

    Magnetic frustration and spontaneous rotational symmetry breaking in PdCrO2

    Get PDF
    In the triangular layered magnet PdCrO2 the intralayer magnetic interactions are strong, however the lattice structure frustrates interlayer interactions. In spite of this, long-range, 120^\circ antiferromagnetic order condenses at TN=38T_N = 38~K. We show here through neutron scattering measurements under in-plane uniaxial stress and in-plane magnetic field that this occurs through a spontaneous lifting of the three-fold rotational symmetry of the nonmagnetic lattice, which relieves the interlayer frustration. We also show through resistivity measurements that uniaxial stress can suppress thermal magnetic disorder within the antiferromagnetic phase.Comment: 9 pages, 9 figure

    A Technology Aware Magnetic QCA NCL-HDL Architecture

    Get PDF
    Magnetic Quantum Dot Cellular Automata (MQCA) have been recently proposed as an attractive implementation of QCA as a possible CMOS technology substitute. Marking a difference with respect to previous contributions, in this work we show that it is possible to develop and describe complex MQCA computational blocks strongly linking technology and having in mind a feasible realization. Thus, we propose a practicable clock structure for MQCA baptised "snake-clock", we stick to this while developing a system level Hardware Description Language (HDL) based description of an architectural block, and we suggest a delay insensitive Null Convention Logic (NCL) implementation for the magnetic case so that the "layout=timing" problem can be solved. Furthermore we include in our model aspects critically related to technology and real production, that is timing, power and layout, and we present the preliminary steps of our experiments, the results of which will be included in the architecture descriptio

    Fabrication, properties, and applications of flexible magnetic films

    Full text link
    Flexible magnetic devices, i.e., magnetic devices fabricated on flexible substrates, are very attractive in application of detecting magnetic field in arbitrary surface, non-contact actuators, and microwave devices due to the stretchable, biocompatible, light-weight, portable, and low cost properties. Flexible magnetic films are essential for the realization of various functionalities of flexible magnetic devices. To give a comprehensive understanding for flexible magnetic films and related devices, we have reviewed recent advances in the studies of flexible magnetic films including fabrication methods, magnetic and transport properties of flexible magnetic films, and their applications in magnetic sensors, actuators, and microwave devices. Three typical methods were introduced to prepare the flexible magnetic films. Stretching or bending the flexible magnetic films offers a good way to apply mechanical strain on magnetic films, so that magnetic anisotropy, exchanged bias, coercivity, and magnetoresistance can be effectively manipulated. Finally, a series of examples were shown to demonstrate the great potential of flexible magnetic films for future applications.Comment: 30 pages, 24 figure

    Nonlinear turbulent magnetic diffusion and effective drift velocity of large-scale magnetic field in a two-dimensional magnetohydrodynamic turbulence

    Full text link
    We study a nonlinear quenching of turbulent magnetic diffusion and effective drift velocity of large-scale magnetic field in a developed two-dimensional MHD turbulence at large magnetic Reynolds numbers. We show that transport of the mean-square magnetic potential strongly changes quenching of turbulent magnetic diffusion. In particularly, the catastrophic quenching of turbulent magnetic diffusion does not occur for the large-scale magnetic fields BBeq/RmB \gg B_{\rm eq} / \sqrt{\rm Rm} when a divergence of the flux of the mean-square magnetic potential is not zero, where BeqB_{\rm eq} is the equipartition mean magnetic field determined by the turbulent kinetic energy and Rm is the magnetic Reynolds number. In this case the quenching of turbulent magnetic diffusion is independent of magnetic Reynolds number. The situation is similar to three-dimensional MHD turbulence at large magnetic Reynolds numbers whereby the catastrophic quenching of the alpha effect does not occur when a divergence of the flux of the small-scale magnetic helicity is not zero.Comment: 8 pages, Physical Review E, in pres

    Magnetic Catalysis vs Magnetic Inhibition

    Full text link
    We discuss the fate of chiral symmetry in an extremely strong magnetic field B. We investigate not only quark fluctuations but also neutral meson effects. The former would enhance the chiral-symmetry breaking at finite B according to the Magnetic Catalysis, while the latter would suppress the chiral condensate once B exceeds the scale of the hadron structure. Using a chiral model we demonstrate how neutral mesons are subject to the dimensional reduction and the low dimensionality favors the chiral-symmetric phase. We point out that this effect, the Magnetic Inhibition, can be a feasible explanation for recent lattice-QCD data indicating the decreasing behavior of the chiral-restoration temperature with increasing B.Comment: 5 pages, 2 figure

    Electron Magnetic Resonance: The Modified Bloch Equation

    Full text link
    We find a modified Bloch equation for the electronic magnetic moment when the magnetic moment explicitly contains a diamagnetic contribution (a magnetic field induced magnetic moment arising from the electronic orbital angular momentum) in addition to the intrinsic magnetic moment of the electron. The modified Bloch is coupled to equations of motion for the position and momentum operators. In the presence of static and time varying magnetic field components, the magnetic moment oscillates out of phase with the magnetic field and power is absorbed by virtue of the magnetic field induced magnetic moment, even in the absence of coupling to the environment. We explicitly work out the spectrum and absorption for the case of a pp state electron

    Observations of solar small-scale magnetic flux-sheet emergence

    Full text link
    Aims. Moreno-Insertis et al. (2018) recently discovered two types of flux emergence in their numerical simulations: magnetic loops and magnetic sheet emergence. Whereas magnetic loop emergence has been documented well in the last years, by utilising high-resolution full Stokes data from ground-based telescopes as well as satellites, magnetic sheet emergence is still an understudied process. We report here on the first clear observational evidence of a magnetic sheet emergence and characterise its development. Methods. Full Stokes spectra from the Hinode spectropolarimeter were inverted with the SIR code to obtain solar atmospheric parameters such as temperature, line-of-sight velocities and full magnetic field vector information. Results. We analyse a magnetic flux emergence event observed in the quiet-sun internetwork. After a large scale appearance of linear polarisation, a magnetic sheet with horizontal magnetic flux density of up to 194 Mx/cm2^{2} hovers in the low photosphere spanning a region of 2 to 3 arcsec. The magnetic field azimuth obtained through Stokes inversions clearly shows an organised structure of transversal magnetic flux density emerging. The granule below the magnetic flux-sheet tears the structure apart leaving the emerged flux to form several magnetic loops at the edges of the granule. Conclusions. A large amount of flux with strong horizontal magnetic fields surfaces through the interplay of buried magnetic flux and convective motions. The magnetic flux emerges within 10 minutes and we find a longitudinal magnetic flux at the foot points of the order of \sim101810^{18} Mx. This is one to two orders of magnitude larger than what has been reported for small-scale magnetic loops. The convective flows feed the newly emerged flux into the pre-existing magnetic population on a granular scale.Comment: 6 pages, 5 figures, accepted as a letter in A&
    corecore