2 research outputs found

    MAC protocol for underwater acoustic sensor network based on belied state space

    No full text
    Abstract This study aims to solve time-space uncertainties due to the narrow network channel bandwidth and long transmission delay of an underwater acoustic sensor network when a node is using a channel. This study proposes a MAC protocol (BSPMDP-MAC) for an underwater acoustic sensor network based on the belief state space. This protocol can averagely divide the time axis of a sensor’s receiving nodes into n slots. The action state information of a sensor’s transmission node was divided by the grades of link quality and the residual energy of each node. The receiving nodes would obtain the decision strategy sequence of the usage rights of the competitive channels of the sensor’s transmission nodes according to the joint probability distributions of historical observations and action information of channel occupancy. The transmission nodes will transmit data packets to the receiving nodes in turns in allocated slots, according to the decision strategy sequence, and the receiving nodes will predict the channel occupancy and perceive the belief states and access actions in the next cycle, according to the present belief states and actions. These experimental simulation results show that this protocol can reduce the collision rate of data packets, improve the network throughput and transmission success rate of data packets, and reduce the energy overhead of the network
    corecore