41 research outputs found

    Tensor Complementarity Problem and Semi-positive Tensors

    Full text link
    The tensor complementarity problem (\q, \mathcal{A}) is to \mbox{ find } \x \in \mathbb{R}^n\mbox{ such that }\x \geq \0, \q + \mathcal{A}\x^{m-1} \geq \0, \mbox{ and }\x^\top (\q + \mathcal{A}\x^{m-1}) = 0. We prove that a real tensor A\mathcal{A} is a (strictly) semi-positive tensor if and only if the tensor complementarity problem (\q, \mathcal{A}) has a unique solution for \q>\0 (\q\geq\0), and a symmetric real tensor is a (strictly) semi-positive tensor if and only if it is (strictly) copositive. That is, for a strictly copositive symmetric tensor A\mathcal{A}, the tensor complementarity problem (\q, \mathcal{A}) has a solution for all \q \in \mathbb{R}^n

    Positive Definiteness and Semi-Definiteness of Even Order Symmetric Cauchy Tensors

    Full text link
    Motivated by symmetric Cauchy matrices, we define symmetric Cauchy tensors and their generating vectors in this paper. Hilbert tensors are symmetric Cauchy tensors. An even order symmetric Cauchy tensor is positive semi-definite if and only if its generating vector is positive. An even order symmetric Cauchy tensor is positive definite if and only if its generating vector has positive and mutually distinct entries. This extends Fiedler's result for symmetric Cauchy matrices to symmetric Cauchy tensors. Then, it is proven that the positive semi-definiteness character of an even order symmetric Cauchy tensor can be equivalently checked by the monotone increasing property of a homogeneous polynomial related to the Cauchy tensor. The homogeneous polynomial is strictly monotone increasing in the nonnegative orthant of the Euclidean space when the even order symmetric Cauchy tensor is positive definite. Furthermore, we prove that the Hadamard product of two positive semi-definite (positive definite respectively) symmetric Cauchy tensors is a positive semi-definite (positive definite respectively) tensor, which can be generalized to the Hadamard product of finitely many positive semi-definite (positive definite respectively) symmetric Cauchy tensors. At last, bounds of the largest H-eigenvalue of a positive semi-definite symmetric Cauchy tensor are given and several spectral properties on Z-eigenvalues of odd order symmetric Cauchy tensors are shown. Further questions on Cauchy tensors are raised

    Three Dimensional Strongly Symmetric Circulant Tensors

    Full text link
    In this paper, we give a necessary and sufficient condition for an even order three dimensional strongly symmetric circulant tensor to be positive semi-definite. In some cases, we show that this condition is also sufficient for this tensor to be sum-of-squares. Numerical tests indicate that this is also true in the other cases
    corecore