4 research outputs found

    Music Emotion Classification based on Lyrics-Audio using Corpus based Emotion

    Get PDF
    Music has lyrics and audio. That’s components can be a feature for music emotion classification. Lyric features were extracted from text data and audio features were extracted from audio signal data.In the classification of emotions, emotion corpus is required for lyrical feature extraction. Corpus Based Emotion (CBE) succeed to increase the value of F-Measure for emotion classification on text documents. The music document has an unstructured format compared with the article text document. So it requires good preprocessing and conversion process before classification process. We used MIREX Dataset for this research. Psycholinguistic and stylistic features were used as lyrics features. Psycholinguistic feature was a feature that related to the category of emotion. In this research, CBE used to support the extraction process of psycholinguistic feature. Stylistic features related with usage of unique words in the lyrics, e.g. ‘ooh’, ‘ah’, ‘yeah’, etc. Energy, temporal and spectrum features were extracted for audio features.The best test result for music emotion classification was the application of Random Forest methods for lyrics and audio features. The value of F-measure was 56.8%

    Crowdsourcing Emotions in Music Domain

    Get PDF
    An important source of intelligence for music emotion recognition today comes from user-provided community tags about songs or artists. Recent crowdsourcing approaches such as harvesting social tags, design of collaborative games and web services or the use of Mechanical Turk, are becoming popular in the literature. They provide a cheap, quick and efficient method, contrary to professional labeling of songs which is expensive and does not scale for creating large datasets. In this paper we discuss the viability of various crowdsourcing instruments providing examples from research works. We also share our own experience, illustrating the steps we followed using tags collected from Last.fm for the creation of two music mood datasets which are rendered public. While processing affect tags of Last.fm, we observed that they tend to be biased towards positive emotions; the resulting dataset thus contain more positive songs than negative ones

    Music Mood Classification Based on Lyrics and Audio Tracks

    Get PDF
    Music mood classification has always been an intriguing topic. Lyrics and audio tracks are two major sources of evidence for music mood classification. This paper compares the performance between feature representations extracted from lyrics and feature representations extracted from audio tracks. Evaluation results suggest text-based classifier and audio-feature-based classifier have similar performance for certain moods.Master of Science in Information Scienc

    Music emotion recognition: a multimodal machine learning approach

    Get PDF
    Music emotion recognition (MER) is an emerging domain of the Music Information Retrieval (MIR) scientific community, and besides, music searches through emotions are one of the major selection preferred by web users. As the world goes to digital, the musical contents in online databases, such as Last.fm have expanded exponentially, which require substantial manual efforts for managing them and also keeping them updated. Therefore, the demand for innovative and adaptable search mechanisms, which can be personalized according to users’ emotional state, has gained increasing consideration in recent years. This thesis concentrates on addressing music emotion recognition problem by presenting several classification models, which were fed by textual features, as well as audio attributes extracted from the music. In this study, we build both supervised and semisupervised classification designs under four research experiments, that addresses the emotional role of audio features, such as tempo, acousticness, and energy, and also the impact of textual features extracted by two different approaches, which are TF-IDF and Word2Vec. Furthermore, we proposed a multi-modal approach by using a combined feature-set consisting of the features from the audio content, as well as from context-aware data. For this purpose, we generated a ground truth dataset containing over 1500 labeled song lyrics and also unlabeled big data, which stands for more than 2.5 million Turkish documents, for achieving to generate an accurate automatic emotion classification system. The analytical models were conducted by adopting several algorithms on the crossvalidated data by using Python. As a conclusion of the experiments, the best-attained performance was 44.2% when employing only audio features, whereas, with the usage of textual features, better performances were observed with 46.3% and 51.3% accuracy scores considering supervised and semi-supervised learning paradigms, respectively. As of last, even though we created a comprehensive feature set with the combination of audio and textual features, this approach did not display any significant improvement for classification performanc
    corecore