799 research outputs found
Impact of Human Immunodeficiency Virus in the Pathogenesis and Outcome of Patients with Glioblastoma Multiforme.
BackgroundImprovement in antiviral therapies have been accompanied by an increased frequency of non-Acquired Immune Deficiency Syndrome (AIDS) defining malignancies, such as glioblastoma multiforme. Here, we investigated all reported cases of human immunodeficiency virus (HIV)-positive patients with glioblastoma and evaluated their clinical outcomes. A comprehensive review of the molecular pathogenetic mechanisms underlying glioblastoma development in the setting of HIV/AIDS is provided.MethodsWe performed a PubMed search using keywords "HIV glioma" AND "glioblastoma," and "AIDS glioma" AND "glioblastoma." Case reports and series describing HIV-positive patients with glioblastoma (histologically-proven World Health Organization grade IV astrocytoma) and reporting on HAART treatment status, clinical follow-up, and overall survival (OS), were included for the purposes of quantitative synthesis. Patients without clinical follow-up data or OS were excluded. Remaining articles were assessed for data extraction eligibility.ResultsA total of 17 patients met our inclusion criteria. Of these patients, 14 (82.4%) were male and 3 (17.6%) were female, with a mean age of 39.5±9.2 years (range 19-60 years). Average CD4 count at diagnosis of glioblastoma was 358.9±193.4 cells/mm3. Tumor progression rather than AIDS-associated complications dictated patient survival. There was a trend towards increased median survival with HAART treatment (12.0 vs 7.5 months, p=0.10).ConclusionOur data suggests that HAART is associated with improved survival in patients with HIV-associated glioblastoma, although the precise mechanisms underlying this improvement remain unclear
Developmental and pathological lymphangiogenesis: from models to human disease
The lymphatic vascular system, the body's second vascular system present in vertebrates, has emerged in recent years as a crucial player in normal and pathological processes. It participates in the maintenance of normal tissue fluid balance, the immune functions of cellular and antigen trafficking and absorption of fatty acids and lipid-soluble vitamins in the gut. Recent scientific discoveries have highlighted the role of lymphatic system in a number of pathologic conditions, including lymphedema, inflammatory diseases, and tumor metastasis. Development of genetically modified animal models, identification of lymphatic endothelial specific markers and regulators coupled with technological advances such as high-resolution imaging and genome-wide approaches have been instrumental in understanding the major steps controling growth and remodeling of lymphatic vessels. This review highlights the recent insights and developments in the field of lymphatic vascular biolog
Recommended from our members
What Immunological Defects Predispose to Non-tuberculosis Mycobacterial Infections?
Nontuberculous mycobacteria (NTM) are categorized as one of the large and diverse groups of environmental organisms which are abundant in water and soil.  NTM cause a variety of diseases in humans that mainly affect the lung. A predisposition to pulmonary NTM is evident in patients with parenchymal structural diseases including bronchiectasis, emphysema, tuberculosis (TB), cystic fibrosis (CF), rheumatologic lung diseases and other chronic diseases with pulmonary manifestations. Lung infections are not the only consequences of being infected by NTM as they can also infect skin and soft tissue and may also cause lymphadenitis (predominantly in young children) and disseminated disease in human immunodeficiency virus (HIV)-infected patients or those with severely compromised immune system. NTM are also found in many subjects without any known risk factors.  Although the recent advances in imaging and microbiologic techniques including gene sequencing have provided a better view of the problems caused by NTM and has enhanced our understanding of the disease, many uncertainties regarding the immunologic response to NTM still exist. There is also limited data on the immunogenetics of NTM infection. Here, the authors reviewed the main immunogenetic defects as well as other immunological conditions which are associated with an increased the risk of NTM infections
Lactoferrin's anti-cancer properties. Safety, selectivity, and wide range of action
Despite recent advances in cancer therapy, current treatments, including radiotherapy, chemotherapy, and immunotherapy, although beneficial, present attendant side effects and long-term sequelae, usually more or less affecting quality of life of the patients. Indeed, except for most of the immunotherapeutic agents, the complete lack of selectivity between normal and cancer cells for radio- and chemotherapy can make them potential antagonists of the host anti-cancer self-defense over time. Recently, the use of nutraceuticals as natural compounds corroborating anti-cancer standard therapy is emerging as a promising tool for their relative abundance, bioavailability, safety, low-cost effectiveness, and immuno-compatibility with the host. In this review, we outlined the anti-cancer properties of Lactoferrin (Lf), an iron-binding glycoprotein of the innate immune defense. Lf shows high bioavailability after oral administration, high selectivity toward cancer cells, and a wide range of molecular targets controlling tumor proliferation, survival, migration, invasion, and metastasization. Of note, Lf is able to promote or inhibit cell proliferation and migration depending on whether it acts upon normal or cancerous cells, respectively. Importantly, Lf administration is highly tolerated and does not present significant adverse effects. Moreover, Lf can prevent development or inhibit cancer growth by boosting adaptive immune response. Finally, Lf was recently found to be an ideal carrier for chemotherapeutics, even for the treatment of brain tumors due to its ability to cross the blood-brain barrier, thus globally appearing as a promising tool for cancer prevention and treatment, especially in combination therapies
Localized Immunotherapy via Liposome-Anchored Anti-CD137 + IL-2 Prevents Lethal Toxicity and Elicits Local and Systemic Antitumor Immunity
Immunostimulatory agonists such as anti-CD137 and interleukin (IL)-2 have elicited potent antitumor immune responses in preclinical studies, but their clinical use is limited by inflammatory toxicities that result upon systemic administration. We hypothesized that by rigorously restricting the biodistribution of immunotherapeutic agents to a locally accessible lesion and draining lymph node(s), effective local and systemic antitumor immunity could be achieved in the absence of systemic toxicity. We anchored anti-CD137 and an engineered IL-2Fc fusion protein to the surfaces of PEGylated liposomes, whose physical size permitted dissemination in the tumor parenchyma and tumor-draining lymph nodes but blocked entry into the systemic circulation following intratumoral injection. In the B16F10 melanoma model, intratumoral liposome-coupled anti-CD137 + IL-2Fc therapy cured a majority of established primary tumors while avoiding the lethal inflammatory toxicities caused by equivalent intratumoral doses of soluble immunotherapy. Immunoliposome therapy induced protective antitumor memory and elicited systemic antitumor immunity that significantly inhibited the growth of simultaneously established distal tumors. Tumor inhibition was CD8[superscript +] T-cell–dependent and was associated with increased CD8[superscript +] T-cell infiltration in both treated and distal tumors, enhanced activation of tumor antigen–specific T cells in draining lymph nodes, and a reduction in regulatory T cells in treated tumors. These data suggest that local nanoparticle-anchored delivery of immuno-agonists represents a promising strategy to improve the therapeutic window and clinical applicability of highly potent but otherwise intolerable regimens of cancer immunotherapy.Dana-Farber/Harvard Cancer Center-MIT Bridge Project Fun
Toca 511 gene transfer and treatment with the prodrug, 5-fluorocytosine, promotes durable antitumor immunity in a mouse glioma model.
BackgroundToca 511 (vocimagene amiretrorepvec) is a retroviral replicating vector encoding an optimized yeast cytosine deaminase (CD). Tumor-selective expression of CD converts the prodrug, 5-fluorocytosine (5-FC), into the active chemotherapeutic, 5-fluorouracil (5-FU). This therapeutic approach is being tested in a randomized phase II/III trial in recurrent glioblastoma and anaplastic astrocytoma (NCT0241416). The aim of this study was to identify the immune cell subsets contributing to antitumor immune responses following treatment with 5-FC in Toca 511-expressing gliomas in a syngeneic mouse model.MethodsFlow cytometry was utilized to monitor and characterize the immune cell infiltrate in subcutaneous Tu-2449 gliomas in B6C3F1 mice treated with Toca 511 and 5-FC.ResultsTumor-bearing animals treated with Toca 511 and 5-FC display alterations in immune cell populations within the tumor that result in antitumor immune protection. Attenuated immune subsets were exclusive to immunosuppressive cells of myeloid origin. Depletion of immunosuppressive cells temporally preceded a second event which included expansion of T cells which were polarized away from Th2 and Th17 in the CD4+ T cell compartment with concomitant expansion of interferon gamma-expressing CD8+ T cells. Immune alterations correlated with clearance of Tu-2449 subcutaneous tumors and T cell-dependent protection from future tumor challenge.ConclusionsTreatment with Toca 511 and 5-FC has a concentrated effect at the site of the tumor which causes direct tumor cell death and alterations in immune cell infiltrate, resulting in a tumor microenvironment that is more permissive to establishment of a T cell mediated antitumor immune response
Nanobodies as tools to understand, diagnose, and treat African trypanosomiasis
African trypanosomes are strictly extracellular protozoan parasites that cause diseases in humans and livestock and significantly affect the economic development of sub-Saharan Africa. Due to an elaborate and efficient (vector)-parasite-host interplay, required to complete their life cycle/transmission, trypanosomes have evolved efficient immune escape mechanisms that manipulate the entire host immune response. So far, not a single field applicable vaccine exists, and chemotherapy is the only strategy available to treat the disease. Current therapies, however, exhibit high drug toxicity and an increased drug resistance is being reported. In addition, diagnosis is often hampered due to the inadequacy of current diagnostic procedures. In the context of tackling the shortcomings of current treatment and diagnostic approaches, nanobodies (Nbs, derived from the heavy chain-only antibodies of camels and llamas) might represent unmet advantages compared to conventional tools. Indeed, the combination of their small size, high stability, high affinity, and specificity for their target and tailorability represents a unique advantage, which is reflected by their broad use in basic and clinical research to date. In this article, we will review and discuss (i) diagnostic and therapeutic applications of Nbs that are being evaluated in the context of African trypanosomiasis, (ii) summarize new strategies that are being developed to optimize their potency for advancing their use, and (iii) document on unexpected properties of Nbs, such as inherent trypanolytic activities, that besides opening new therapeutic avenues, might offer new insight in hidden biological activities of conventional antibodies
Incidence of lymph node metastases after piecemeal laser-surgical and en bloc cold steel resection of auricular VX2 carcinoma. A comparative study.
The CO2 laser surgery has become a widely used clinical treatment in otorhinolaryngology. In advanced neoplastic disease of the head and neck it is often difficult and even impossible to expose well the whole tumor through the surgical laryngoscope. In such cases the tumor is usually divided with the CO2 laser in several parts, which are excised separately. This approach seems opposed to the basic principles of oncologic surgery, where the tumor should not be touched in order to avoid local recurrences or metastatic spread. The proponents of the piecemeal resections refer back to few morphological and clinical studies, which show no evidence of increased incidence of metastases after the piecemeal resection.
On this background the aim of the present study was to compare the piecemeal laser surgical complete (R0) resection with cold steel complete (R0) en bloc resection of tumors in an animal model. For both surgical approaches the incidence of local recurrences, regional and distant metastases had to be compared.
After randomization to the both study arms in 143 male New Zealand White rabbits a VX2 squamous cell carcinoma was induced on the auricle. On day 8 a complete resection of the tumour was performed: for the first group - with cold steel resection en bloc; for the second group the cancer was transected by the CO2 laser following which it was removed in two pieces - piecemeal laser-surgical resection. On the 42nd postoperative day all animals were sacrificed and subjected to evaluation of the tumoral spread.
Compared on the incidence of LN metastases the two therapeutic groups showed significant differences. Twenty-five percent of the animals with en bloc cold steel had metastases to regional lymph nodes, whereas forty-seven percent of the laser piecemeal group had metastatic nodal involvement. The incidence of distant metastases was similar for both study groups - 12.3% for the en block resection group and 7.7% for the piecemeal laser resection group.
In this experimental setting the piecemeal laser surgical resection achieved better local results, but lead to more metastases (mainly lymphatic ones), than the cold steal en bloc resection. However, it is unlikely that tumor cells disseminated from the resection line itself caused this difference, as the vessels here were occluded by the laser. Mechanisms, which could explain the observed difference include dissemination through the walls of the intratumoral or peritumoral lymphatics. Piecemeal laser resection may decompress intratumoral pressure and release intra and peritumoral lymphatics, causing a flood of tumor emboli. Changes in the permeability and the lymph/blood flow caused by the local laser heat could have similar effect. Additionally mechanical trauma to the tumor mass itself or explosion-like tumor cell spread into the lymphatic network due to the applied laser energy could also precipitate metastases
Metastasis: cell-autonomous mechanisms versus contributions by the tumor microenvironment
Abstract.: The fatality of cancer predominantly results from the dissemination of primary tumor cells to distant sites and the subsequent formation of metastases. During tumor progression, some of the primary tumor cells as well as the tumor microenvironment undergo characteristic molecular changes, which are essential for the metastatic dissemination of tumor cells. In this review, we will discuss recent insights into pro-metastatic events occurring in tumor cells themselves and in the tumor stroma. Tumor cell-intrinsic alterations include the loss of cell polarity and alterations in cell-cell and cell-matrix adhesion as well as deregulated receptor kinase signaling, which together support detachment, migration and invasion of tumor cells. On the other hand, the tumor stroma, including endothelial cells, fibroblasts and cells of the immune system, is engaged in an active molecular crosstalk within the tumor microenvironment. Subsequent activation of blood vessel and lymph vessel angiogenesis together with inflammatory and immune-suppressive responses further promotes cancer cell migration and invasion, as well as initiation of the metastatic proces
The role of the immune system in brain metastasis
Metastatic brain tumors are the most common brain tumors in adults. With numerous successful advancements in systemic treatment of most common cancer types, brain metastasis is becoming increasingly important in the overall prognosis of cancer patients. Brain metastasis of peripheral tumor is the result of complex interplay of primary tumor, immune system and central nervous system microenvironment. Once formed, brain metastases hide behind the blood brain barrier and become inaccessible to chemotherapies that are otherwise successful in targeting systemic cancer. The approval of immune checkpoint inhibitors for several common cancers such as advanced melanoma and lung cancers brings with it the opportunity and obligation to further understand the mechanisms of immunosuppression by tumors that spread to the brain as well as the interaction between the brain environment and tumor microenvironment. In this review paper we define the central role of the immune system in the development of brain metastases. We performed a comprehensive review of the literature to outline the molecular mechanisms of immunosuppression used by tumors and how the immune system interacts with the central nervous system to facilitate brain metastasis. In particular we discuss the tumor-type-specific mechanisms of metastasis of cancers that preferentially metastasize to the brain as well as the therapies that effectively modulate the immune response, such as immune checkpoint inhibitors and vaccines
- …
