351 research outputs found

    Hopping dynamics for localized Lyapunov vectors in many-hard-disk systems

    Full text link
    The dynamics of the localized region of the Lyapunov vector for the largest Lyapunov exponent is discussed in quasi-one-dimensional hard-disk systems at low density. We introduce a hopping rate to quantitatively describe the movement of the localized region of this Lyapunov vector, and show that it is a decreasing function of hopping distance, implying spatial correlation of the localized regions. This behavior is explained quantitatively by a brick accumulation model derived from hard-disk dynamics in the low density limit, in which hopping of the localized Lyapunov vector is represented as the movement of the highest brick position. We also give an analytical expression for the hopping rate, which is obtained us a sum of probability distributions for brick height configurations between two separated highest brick sites. The results of these simple models are in good agreement with the simulation results for hard-disk systems.Comment: 28 pages, 13 figure

    Quantifying Spatiotemporal Chaos in Rayleigh-B\'enard Convection

    Full text link
    Using large-scale parallel numerical simulations we explore spatiotemporal chaos in Rayleigh-B\'enard convection in a cylindrical domain with experimentally relevant boundary conditions. We use the variation of the spectrum of Lyapunov exponents and the leading order Lyapunov vector with system parameters to quantify states of high-dimensional chaos in fluid convection. We explore the relationship between the time dynamics of the spectrum of Lyapunov exponents and the pattern dynamics. For chaotic dynamics we find that all of the Lyapunov exponents are positively correlated with the leading order Lyapunov exponent and we quantify the details of their response to the dynamics of defects. The leading order Lyapunov vector is used to identify topological features of the fluid patterns that contribute significantly to the chaotic dynamics. Our results show a transition from boundary dominated dynamics to bulk dominated dynamics as the system size is increased. The spectrum of Lyapunov exponents is used to compute the variation of the fractal dimension with system parameters to quantify how the underlying high-dimensional strange attractor accommodates a range of different chaotic dynamics

    Localized behavior in the Lyapunov vectors for quasi-one-dimensional many-hard-disk systems

    Full text link
    We introduce a definition of a "localization width" whose logarithm is given by the entropy of the distribution of particle component amplitudes in the Lyapunov vector. Different types of localization widths are observed, for example, a minimum localization width where the components of only two particles are dominant. We can distinguish a delocalization associated with a random distribution of particle contributions, a delocalization associated with a uniform distribution and a delocalization associated with a wave-like structure in the Lyapunov vector. Using the localization width we show that in quasi-one-dimensional systems of many hard disks there are two kinds of dependence of the localization width on the Lyapunov exponent index for the larger exponents: one is exponential, and the other is linear. Differences, due to these kinds of localizations also appear in the shapes of the localized peaks of the Lyapunov vectors, the Lyapunov spectra and the angle between the spatial and momentum parts of the Lyapunov vectors. We show that the Krylov relation for the largest Lyapunov exponent λρlnρ\lambda\sim-\rho\ln\rho as a function of the density ρ\rho is satisfied (apart from a factor) in the same density region as the linear dependence of the localization widths is observed. It is also shown that there are asymmetries in the spatial and momentum parts of the Lyapunov vectors, as well as in their xx and yy-components.Comment: 41 pages, 21 figures, Manuscript including the figures of better quality is available from http://www.phys.unsw.edu.au/~gary/Research.htm

    Boundary effects in the stepwise structure of the Lyapunov spectra for quasi-one-dimensional systems

    Full text link
    Boundary effects in the stepwise structure of the Lyapunov spectra and the corresponding wavelike structure of the Lyapunov vectors are discussed numerically in quasi-one-dimensional systems consisting of many hard-disks. Four kinds of boundary conditions constructed by combinations of periodic boundary conditions and hard-wall boundary conditions are considered, and lead to different stepwise structures of the Lyapunov spectra in each case. We show that a spatial wavelike structure with a time-oscillation appears in the spatial part of the Lyapunov vectors divided by momenta in some steps of the Lyapunov spectra, while a rather stationary wavelike structure appears in the purely spatial part of the Lyapunov vectors corresponding to the other steps. Using these two kinds of wavelike structure we categorize the sequence and the kinds of steps of the Lyapunov spectra in the four different boundary condition cases.Comment: 33 pages, 25 figures including 10 color figures. Manuscript including the figures of better quality is available from http://newt.phys.unsw.edu.au/~gary/step.pd
    corecore