101 research outputs found

    Linear Predictive Spectral Analysis via the Lp Norm

    Get PDF
    This study involves linear predictive spectral analysis under the general LP norm; both one dimensional and two dimensional spectral estimation algorithms are developed. The objective in this study is determination of frequency resolution capability for various LP normed solutions to linear predictive spectral estimation equations. A modified residual steepest descent algorithm is utilized to generate the required solution. The research presented in this thesis could not have been accomplished without the support of the Oklahoma State University Research Consortium For Well Log Data Enhancement Via Signal Processing. The member companies of this consortium include Amococ Production Company, Area Oil and Gas Company, Cities Service Oil and Gas Corporation, Conoco, Exxon, IBM, Mobil Research and Development, Phillips Petroleum Corporation, Sohio Petroleum Company, and Texaco.Electrical Engineerin

    Sparsity in Linear Predictive Coding of Speech

    Get PDF
    nrpages: 197status: publishe

    Model-based Analysis and Processing of Speech and Audio Signals

    Get PDF

    Relaxing Fundamental Assumptions in Iterative Learning Control

    Full text link
    Iterative learning control (ILC) is perhaps best decribed as an open loop feedforward control technique where the feedforward signal is learned through repetition of a single task. As the name suggests, given a dynamic system operating on a finite time horizon with the same desired trajectory, ILC aims to iteratively construct the inverse image (or its approximation) of the desired trajectory to improve transient tracking. In the literature, ILC is often interpreted as feedback control in the iteration domain due to the fact that learning controllers use information from past trials to drive the tracking error towards zero. However, despite the significant body of literature and powerful features, ILC is yet to reach widespread adoption by the control community, due to several assumptions that restrict its generality when compared to feedback control. In this dissertation, we relax some of these assumptions, mainly the fundamental invariance assumption, and move from the idea of learning through repetition to two dimensional systems, specifically repetitive processes, that appear in the modeling of engineering applications such as additive manufacturing, and sketch out future research directions for increased practicality: We develop an L1 adaptive feedback control based ILC architecture for increased robustness, fast convergence, and high performance under time varying uncertainties and disturbances. Simulation studies of the behavior of this combined L1-ILC scheme under iteration varying uncertainties lead us to the robust stability analysis of iteration varying systems, where we show that these systems are guaranteed to be stable when the ILC update laws are designed to be robust, which can be done using existing methods from the literature. As a next step to the signal space approach adopted in the analysis of iteration varying systems, we shift the focus of our work to repetitive processes, and show that the exponential stability of a nonlinear repetitive system is equivalent to that of its linearization, and consequently uniform stability of the corresponding state space matrix.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133232/1/altin_1.pd

    Robust Adaptive Control in H(infinity).

    Get PDF
    This dissertation addresses the problem of unifying identification and control in the paradigm of {\cal H}\sb\infty to achieve robust adaptive control. To achieve robust adaptive control, we employ the same approach used for identification in {\cal H}\sb\infty and robust control in {\cal H}\sb\infty. In the modeling part, we aim not only to identify the nominal plant, but also to quantify the modeling error in {\cal H}\sb\infty norm. The linear algorithm based on least-squares is used, and the upper bounds for the corresponding modeling error are derived. In the control part, we aim to achieve the performance specification in frequency domain using innovative model reference control. New algorithms are derived that minimize an {\cal H}\sb\infty index function associated with the deviation between the performance of the feedback system to be designed, and that of the reference model. The results for the modeling and control part are then combined and applied to adaptive control. It is shown that with mild assumption on persistent excitation, the least squares algorithm in frequency domain is equivalent to the recursive least squares algorithm in time domain. Moreover, finite horizon {\cal H}\sb\infty is employed to design feedback controller recursively using the identified model that is time varying in nature. The robust stability of the adaptive feedback system is then established

    Linear Parameter Varying Approaches as Advanced Control Techniques: Application to Vehicle Dynamics

    Get PDF
    TCC(graduação) - Universidade Federal de Santa Catarina. Centro Tecnológico. Engenharia de Controle e Automação.Ce travail de Fin-d’études présente plusieurs techniques de modélisation, identification et de la commande avancée appliqués a l’étude des systèmes de suspensions semi-actifs. Ce travail est divisé en trois domaines principaux: développement et l’application des techniques LPV pour l’identification des défauts sur les actionneurs dans les systèmes de suspension; développement et mise-en-œuvre d’un système de contrôle prédictif basé sur modèle appliqué en temps réel sur des suspensions semi-actifs; développement des techniques LPV de reconfiguration pour la commande tolerant aux défauts des systèmes de suspension. Les stratégies de commande développées sont analysées par simulation et validation et se montrent satisfaisantes.This End-of-Studies Work presents a range of techniques of Modeling, Identification and Advanced Control applied to the study of Semi-Active Suspensions in Vehicular Systems. This work is divided into three main branches: i) development and application of LPV fault identification techniques on actuators of suspension systems; ii) development and implementation of a real-time model predictive control scheme applied the control of semi- active suspensions; iii) development and application of LPV reconfiguration techniques for fault tolerant control of suspension system. The developed control strategies are analysed through simulation and validation on a mechatronic test-bench and prove themselves satisfactory.Este Trabalho de Conclusão de Curso apresenta diversas técnicas de Modelagem, Identifi- cação e Controle Avançado aplicadas ao estudo de Suspensões Semi-Ativas em Sistemas Veiculares. Este trabalho é divido em três eixos principais: i) Desenvolvimento e aplicação de técnicas LPV de Identificação de Falhas em amortecedores de sistemas de suspensão; ii) Desenvolvimento e implementação de um sistema de Controle Preditivo baseado em modelo aplicado em tempo-real para o controle de suspensões semi-ativas; iii) Desenvolvimento e aplicação de técnicas de reconfiguração LPV para o Controle Tolerante a Falhas de sistemas de suspensão. As técnicas e o desenvolvimento feito são analisados através de simulação e validação em uma plataforma mecatrônica experimental e demonstram-se satisfatórios

    Generalized linear-in-parameter models : theory and audio signal processing applications

    Get PDF
    This thesis presents a mathematically oriented perspective to some basic concepts of digital signal processing. A general framework for the development of alternative signal and system representations is attained by defining a generalized linear-in-parameter model (GLM) configuration. The GLM provides a direct view into the origins of many familiar methods in signal processing, implying a variety of generalizations, and it serves as a natural introduction to rational orthonormal model structures. In particular, the conventional division between finite impulse response (FIR) and infinite impulse response (IIR) filtering methods is reconsidered. The latter part of the thesis consists of audio oriented case studies, including loudspeaker equalization, musical instrument body modeling, and room response modeling. The proposed collection of IIR filter design techniques is submitted to challenging modeling tasks. The most important practical contribution of this thesis is the introduction of a procedure for the optimization of rational orthonormal filter structures, called the BU-method. More generally, the BU-method and its variants, including the (complex) warped extension, the (C)WBU-method, can be consider as entirely new IIR filter design strategies.reviewe

    Robust Loopshaping for Process Control

    Get PDF
    Strong trends in chemical engineering and plant operation have made the control of processes increasingly difficult and have driven the process industry's demand for improved control techniques. Improved control leads to savings in resources, smaller downtimes, improved safety, and reduced pollution. Though the need for improved process control is clear, advanced control methodologies have had only limited acceptance and application in industrial practice. The reason for this gap between control theory and practice is that existing control methodologies do not adequately address all of the following control system requirements and problems associated with control design: * The controller must be insensitive to plant/model mismatch, and perform well under unmeasured or poorly modeled disturbances. * The controlled system must perform well under state or actuator constraints. * The controlled system must be safe, reliable, and easy to maintain. * Controllers are commonly required to be decentralized. * Actuators and sensors must be selected before the controller can be designed. * Inputs and outputs must be paired before the design of a decentralized controller. A framework is presented to address these control requirements/problems in a general, unified manner. The approach will be demonstrated on adhesive coating processes and distillation columns

    16th Nordic Process Control Workshop : Preprints

    Get PDF

    Low Complexity Model Predictive Control of a Diesel Engine Airpath.

    Full text link
    The diesel air path (DAP) system has been traditionally challenging to control due to its highly coupled nonlinear behavior and the need for constraints to be considered for driveability and emissions. An advanced control technology, model predictive control (MPC), has been viewed as a way to handle these challenges, however, current MPC strategies for the DAP are still limited due to the very limited computational resources in engine control units (ECU). A low complexity MPC controller for the DAP system is developed in this dissertation where, by "low complexity," it is meant that the MPC controller achieves tracking and constraint enforcement objectives and can be executed on a modern ECU within 200 microseconds, a computation budget set by Toyota Motor Corporation. First, an explicit MPC design is developed for the DAP. Compared to previous explicit MPC examples for the DAP, a significant reduction in computational complexity is achieved. This complexity reduction is accomplished through, first, a novel strategy of intermittent constraint enforcement. Then, through a novel strategy of gain scheduling explicit MPC, the memory usage of the controller is further reduced and closed-loop tracking performance is improved. Finally, a robust version of the MPC design is developed which is able to enforce constraints in the presence of disturbances without a significant increase in computational complexity compared to non-robust MPC. The ability of the controller to track set-points and enforce constraints is demonstrated in both simulations and experiments. A number of theoretical results pertaining to the gain scheduling strategy is also developed. Second, a nonlinear MPC (NMPC) strategy for the DAP is developed. Through various innovations, a NMPC controller for the DAP is constructed that is not necessarily any more computationally complex than linear explicit MPC and is characterized by a very streamlined process for implementation and calibration. A significant reduction in computational complexity is achieved through the novel combination of Kantorovich's method and constrained NMPC. Zero-offset steady state tracking is achieved through a novel NMPC problem formulation, rate-based NMPC. A comparison of various NMPC strategies and developments is presented illustrating how a low complexity NMPC strategy can be achieved.PhDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120832/1/huxuli_1.pd
    • …
    corecore