9,703 research outputs found

    Lower bounds on the communication complexity of two-party (quantum) processes

    Full text link
    The process of state preparation, its transmission and subsequent measurement can be classically simulated through the communication of some amount of classical information. Recently, we proved that the minimal communication cost is the minimum of a convex functional over a space of suitable probability distributions. It is now proved that this optimization problem is the dual of a geometric programming maximization problem, which displays some appealing properties. First, the number of variables grows linearly with the input size. Second, the objective function is linear in the input parameters and the variables. Finally, the constraints do not depend on the input parameters. These properties imply that, once a feasible point is found, the computation of a lower bound on the communication cost in any two-party process is linearly complex. The studied scenario goes beyond quantum processes and includes the communication complexity scenario introduced by Yao. We illustrate the method by analytically deriving some non-trivial lower bounds. Finally, we conjecture the lower bound n2nn 2^n for a noiseless quantum channel with capacity nn qubits. This bound can have an interesting consequence in the context of the recent quantum-foundational debate on the reality of the quantum state.Comment: Conference version. A more extensive version with more details will be available soo

    Tensor Norms and the Classical Communication Complexity of Nonlocal Quantum Measurement

    Full text link
    We initiate the study of quantifying nonlocalness of a bipartite measurement by the minimum amount of classical communication required to simulate the measurement. We derive general upper bounds, which are expressed in terms of certain tensor norms of the measurement operator. As applications, we show that (a) If the amount of communication is constant, quantum and classical communication protocols with unlimited amount of shared entanglement or shared randomness compute the same set of functions; (b) A local hidden variable model needs only a constant amount of communication to create, within an arbitrarily small statistical distance, a distribution resulted from local measurements of an entangled quantum state, as long as the number of measurement outcomes is constant.Comment: A preliminary version of this paper appears as part of an article in Proceedings of the the 37th ACM Symposium on Theory of Computing (STOC 2005), 460--467, 200

    Optimal measurements for nonlocal correlations

    Full text link
    A problem in quantum information theory is to find the experimental setup that maximizes the nonlocality of correlations with respect to some suitable measure such as the violation of Bell inequalities. The latter has however some drawbacks. First and foremost it is unfeasible to determine the whole set of Bell inequalities already for a few measurements and thus unfeasible to find the experimental setup maximizing their violation. Second, the Bell violation suffers from an ambiguity stemming from the choice of the normalization of the Bell coefficients. An alternative measure of nonlocality with a direct information-theoretic interpretation is the minimal amount of classical communication required for simulating nonlocal correlations. In the case of many instances simulated in parallel, the minimal communication cost per instance is called nonlocal capacity, and its computation can be reduced to a convex-optimization problem. This quantity can be computed for a higher number of measurements and turns out to be useful for finding the optimal experimental setup. Focusing on the bipartite case, in this paper, we present a simple method for maximizing the nonlocal capacity over a given configuration space and, in particular, over a set of possible measurements, yielding the corresponding optimal setup. Furthermore, we show that there is a functional relationship between Bell violation and nonlocal capacity. The method is illustrated with numerical tests and compared with the maximization of the violation of CGLMP-type Bell inequalities on the basis of entangled two-qubit as well as two-qutrit states. Remarkably, the anomaly of nonlocality displayed by qutrits turns out to be even stronger if the nonlocal capacity is employed as a measure of nonlocality.Comment: Some typos and errors have been corrected, especially in the section concerning the relation between Bell violation and communication complexit

    Quantum states cannot be transmitted efficiently classically

    Get PDF
    We show that any classical two-way communication protocol with shared randomness that can approximately simulate the result of applying an arbitrary measurement (held by one party) to a quantum state of nn qubits (held by another), up to constant accuracy, must transmit at least Ω(2n)\Omega(2^n) bits. This lower bound is optimal and matches the complexity of a simple protocol based on discretisation using an ϵ\epsilon-net. The proof is based on a lower bound on the classical communication complexity of a distributed variant of the Fourier sampling problem. We obtain two optimal quantum-classical separations as easy corollaries. First, a sampling problem which can be solved with one quantum query to the input, but which requires Ω(N)\Omega(N) classical queries for an input of size NN. Second, a nonlocal task which can be solved using nn Bell pairs, but for which any approximate classical solution must communicate Ω(2n)\Omega(2^n) bits.Comment: 24 pages; v3: accepted version incorporating many minor corrections and clarification
    corecore