1,074 research outputs found

    Faster exponential-time algorithms in graphs of bounded average degree

    Get PDF
    We first show that the Traveling Salesman Problem in an n-vertex graph with average degree bounded by d can be solved in O*(2^{(1-\eps_d)n}) time and exponential space for a constant \eps_d depending only on d, where the O*-notation suppresses factors polynomial in the input size. Thus, we generalize the recent results of Bjorklund et al. [TALG 2012] on graphs of bounded degree. Then, we move to the problem of counting perfect matchings in a graph. We first present a simple algorithm for counting perfect matchings in an n-vertex graph in O*(2^{n/2}) time and polynomial space; our algorithm matches the complexity bounds of the algorithm of Bjorklund [SODA 2012], but relies on inclusion-exclusion principle instead of algebraic transformations. Building upon this result, we show that the number of perfect matchings in an n-vertex graph with average degree bounded by d can be computed in O*(2^{(1-\eps_{2d})n/2}) time and exponential space, where \eps_{2d} is the constant obtained by us for the Traveling Salesman Problem in graphs of average degree at most 2d. Moreover we obtain a simple algorithm that counts the number of perfect matchings in an n-vertex bipartite graph of average degree at most d in O*(2^{(1-1/(3.55d))n/2}) time, improving and simplifying the recent result of Izumi and Wadayama [FOCS 2012].Comment: 10 page

    How many matchings cover the nodes of a graph?

    Full text link
    Given an undirected graph, are there kk matchings whose union covers all of its nodes, that is, a matching-kk-cover? A first, easy polynomial solution from matroid union is possible, as already observed by Wang, Song and Yuan (Mathematical Programming, 2014). However, it was not satisfactory neither from the algorithmic viewpoint nor for proving graphic theorems, since the corresponding matroid ignores the edges of the graph. We prove here, simply and algorithmically: all nodes of a graph can be covered with k2k\ge 2 matchings if and only if for every stable set SS we have SkN(S)|S|\le k\cdot|N(S)|. When k=1k=1, an exception occurs: this condition is not enough to guarantee the existence of a matching-11-cover, that is, the existence of a perfect matching, in this case Tutte's famous matching theorem (J. London Math. Soc., 1947) provides the right `good' characterization. The condition above then guarantees only that a perfect 22-matching exists, as known from another theorem of Tutte (Proc. Amer. Math. Soc., 1953). Some results are then deduced as consequences with surprisingly simple proofs, using only the level of difficulty of bipartite matchings. We give some generalizations, as well as a solution for minimization if the edge-weights are non-negative, while the edge-cardinality maximization of matching-22-covers turns out to be already NP-hard. We have arrived at this problem as the line graph special case of a model arising for manufacturing integrated circuits with the technology called `Directed Self Assembly'.Comment: 10 page

    Mix and match: a strategyproof mechanism for multi-hospital kidney exchange

    Get PDF
    As kidney exchange programs are growing, manipulation by hospitals becomes more of an issue. Assuming that hospitals wish to maximize the number of their own patients who receive a kidney, they may have an incentive to withhold some of their incompatible donor–patient pairs and match them internally, thus harming social welfare. We study mechanisms for two-way exchanges that are strategyproof, i.e., make it a dominant strategy for hospitals to report all their incompatible pairs. We establish lower bounds on the welfare loss of strategyproof mechanisms, both deterministic and randomized, and propose a randomized mechanism that guarantees at least half of the maximum social welfare in the worst case. Simulations using realistic distributions for blood types and other parameters suggest that in practice our mechanism performs much closer to optimal

    On Minimum Maximal Distance-k Matchings

    Full text link
    We study the computational complexity of several problems connected with finding a maximal distance-kk matching of minimum cardinality or minimum weight in a given graph. We introduce the class of kk-equimatchable graphs which is an edge analogue of kk-equipackable graphs. We prove that the recognition of kk-equimatchable graphs is co-NP-complete for any fixed k2k \ge 2. We provide a simple characterization for the class of strongly chordal graphs with equal kk-packing and kk-domination numbers. We also prove that for any fixed integer 1\ell \ge 1 the problem of finding a minimum weight maximal distance-22\ell matching and the problem of finding a minimum weight (21)(2 \ell - 1)-independent dominating set cannot be approximated in polynomial time in chordal graphs within a factor of δlnV(G)\delta \ln |V(G)| unless P=NP\mathrm{P} = \mathrm{NP}, where δ\delta is a fixed constant (thereby improving the NP-hardness result of Chang for the independent domination case). Finally, we show the NP-hardness of the minimum maximal induced matching and independent dominating set problems in large-girth planar graphs.Comment: 15 pages, 4 figure

    Invertible families of sets of bounded degree

    Full text link
    Let H = (H,V) be a hypergraph with edge set H and vertex set V. Then hypergraph H is invertible iff there exists a permutation pi of V such that for all E belongs to H(edges) intersection of(pi(E) and E)=0. H is invertibility critical if H is not invertible but every hypergraph obtained by removing an edge from H is invertible. The degree of H is d if |{E belongs to H(edges)|x belongs to E}| =< d for each x belongs to V Let i(d) be the maximum number of edges of an invertibility critical hypergraph of degree d. Theorem: i(d) =< (d-1) {2d-1 choose d} + 1. The proof of this result leads to the following covering problem on graphs: Let G be a graph. A family H is subset of (2^{V(G)} is an edge cover of G iff for every edge e of G, there is an E belongs to H(edge set) which includes e. H(edge set) is a minimal edge cover of G iff for H' subset of H, H' is not an edge cover of G. Let b(d) (c(d)) be the maximum cardinality of a minimal edge cover H(edge set) of a complete bipartite graph (complete graph) where H(edge set) has degree d. Theorem: c(d)=< i(d)=<b(d)=< c(d+1) and 3. 2^{d-1} - 2 =< b(d)=< (d-1) {2d-1choose d} +1. The proof of this result uses Sperner theory. The bounds b(d) also arise as bounds on the maximum number of elements in the union of minimal covers of families of sets.Comment: 9 page
    corecore