22,893 research outputs found

    Lower Bounds on Quantum Query Complexity

    Full text link
    Shor's and Grover's famous quantum algorithms for factoring and searching show that quantum computers can solve certain computational problems significantly faster than any classical computer. We discuss here what quantum computers_cannot_ do, and specifically how to prove limits on their computational power. We cover the main known techniques for proving lower bounds, and exemplify and compare the methods.Comment: survey, 23 page

    (Almost) tight bounds for randomized and quantum Local Search on hypercubes and grids

    Full text link
    The Local Search problem, which finds a local minimum of a black-box function on a given graph, is of both practical and theoretical importance to many areas in computer science and natural sciences. In this paper, we show that for the Boolean hypercube \B^n, the randomized query complexity of Local Search is Θ(2n/2n1/2)\Theta(2^{n/2}n^{1/2}) and the quantum query complexity is Θ(2n/3n1/6)\Theta(2^{n/3}n^{1/6}). We also show that for the constant dimensional grid [N1/d]d[N^{1/d}]^d, the randomized query complexity is Θ(N1/2)\Theta(N^{1/2}) for d4d \geq 4 and the quantum query complexity is Θ(N1/3)\Theta(N^{1/3}) for d6d \geq 6. New lower bounds for lower dimensional grids are also given. These improve the previous results by Aaronson [STOC'04], and Santha and Szegedy [STOC'04]. Finally we show for [N1/2]2[N^{1/2}]^2 a new upper bound of O(N1/4(loglogN)3/2)O(N^{1/4}(\log\log N)^{3/2}) on the quantum query complexity, which implies that Local Search on grids exhibits different properties at low dimensions.Comment: 18 pages, 1 figure. v2: introduction rewritten, references added. v3: a line for grant added. v4: upper bound section rewritte

    Adiabatic optimization without local minima

    Full text link
    Several previous works have investigated the circumstances under which quantum adiabatic optimization algorithms can tunnel out of local energy minima that trap simulated annealing or other classical local search algorithms. Here we investigate the even more basic question of whether adiabatic optimization algorithms always succeed in polynomial time for trivial optimization problems in which there are no local energy minima other than the global minimum. Surprisingly, we find a counterexample in which the potential is a single basin on a graph, but the eigenvalue gap is exponentially small as a function of the number of vertices. In this counterexample, the ground state wavefunction consists of two "lobes" separated by a region of exponentially small amplitude. Conversely, we prove if the ground state wavefunction is single-peaked then the eigenvalue gap scales at worst as one over the square of the number of vertices.Comment: 20 pages, 1 figure. Journal versio

    Bounds on Quantum Correlations in Bell Inequality Experiments

    Get PDF
    Bell inequality violation is one of the most widely known manifestations of entanglement in quantum mechanics; indicating that experiments on physically separated quantum mechanical systems cannot be given a local realistic description. However, despite the importance of Bell inequalities, it is not known in general how to determine whether a given entangled state will violate a Bell inequality. This is because one can choose to make many different measurements on a quantum system to test any given Bell inequality and the optimization over measurements is a high-dimensional variational problem. In order to better understand this problem we present algorithms that provide, for a given quantum state, both a lower bound and an upper bound on the maximal expectation value of a Bell operator. Both bounds apply techniques from convex optimization and the methodology for creating upper bounds allows them to be systematically improved. In many cases these bounds determine measurements that would demonstrate violation of the Bell inequality or provide a bound that rules out the possibility of a violation. Examples are given to illustrate how these algorithms can be used to conclude definitively if some quantum states violate a given Bell inequality.Comment: 13 pages, 1 table, 2 figures. Updated version as published in PR
    corecore