7,844 research outputs found

    Planar Induced Subgraphs of Sparse Graphs

    Full text link
    We show that every graph has an induced pseudoforest of at least nm/4.5n-m/4.5 vertices, an induced partial 2-tree of at least nm/5n-m/5 vertices, and an induced planar subgraph of at least nm/5.2174n-m/5.2174 vertices. These results are constructive, implying linear-time algorithms to find the respective induced subgraphs. We also show that the size of the largest KhK_h-minor-free graph in a given graph can sometimes be at most nm/6+o(m)n-m/6+o(m).Comment: Accepted by Graph Drawing 2014. To appear in Journal of Graph Algorithms and Application

    Drawing Planar Graphs with Few Geometric Primitives

    Get PDF
    We define the \emph{visual complexity} of a plane graph drawing to be the number of basic geometric objects needed to represent all its edges. In particular, one object may represent multiple edges (e.g., one needs only one line segment to draw a path with an arbitrary number of edges). Let nn denote the number of vertices of a graph. We show that trees can be drawn with 3n/43n/4 straight-line segments on a polynomial grid, and with n/2n/2 straight-line segments on a quasi-polynomial grid. Further, we present an algorithm for drawing planar 3-trees with (8n17)/3(8n-17)/3 segments on an O(n)×O(n2)O(n)\times O(n^2) grid. This algorithm can also be used with a small modification to draw maximal outerplanar graphs with 3n/23n/2 edges on an O(n)×O(n2)O(n)\times O(n^2) grid. We also study the problem of drawing maximal planar graphs with circular arcs and provide an algorithm to draw such graphs using only (5n11)/3(5n - 11)/3 arcs. This is significantly smaller than the lower bound of 2n2n for line segments for a nontrivial graph class.Comment: Appeared at Proc. 43rd International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2017

    Long induced paths in graphs

    Full text link
    We prove that every 3-connected planar graph on nn vertices contains an induced path on Ω(logn)\Omega(\log n) vertices, which is best possible and improves the best known lower bound by a multiplicative factor of loglogn\log \log n. We deduce that any planar graph (or more generally, any graph embeddable on a fixed surface) with a path on nn vertices, also contains an induced path on Ω(logn)\Omega(\sqrt{\log n}) vertices. We conjecture that for any kk, there is a contant c(k)c(k) such that any kk-degenerate graph with a path on nn vertices also contains an induced path on Ω((logn)c(k))\Omega((\log n)^{c(k)}) vertices. We provide examples showing that this order of magnitude would be best possible (already for chordal graphs), and prove the conjecture in the case of interval graphs.Comment: 20 pages, 5 figures - revised versio

    Some Results On Convex Greedy Embedding Conjecture for 3-Connected Planar Graphs

    Full text link
    A greedy embedding of a graph G=(V,E)G = (V,E) into a metric space (X,d)(X,d) is a function x:V(G)Xx : V(G) \to X such that in the embedding for every pair of non-adjacent vertices x(s),x(t)x(s), x(t) there exists another vertex x(u)x(u) adjacent to x(s)x(s) which is closer to x(t)x(t) than x(s)x(s). This notion of greedy embedding was defined by Papadimitriou and Ratajczak (Theor. Comput. Sci. 2005), where authors conjectured that every 3-connected planar graph has a greedy embedding (possibly planar and convex) in the Euclidean plane. Recently, greedy embedding conjecture has been proved by Leighton and Moitra (FOCS 2008). However, their algorithm do not result in a drawing that is planar and convex for all 3-connected planar graph in the Euclidean plane. In this work we consider the planar convex greedy embedding conjecture and make some progress. We derive a new characterization of planar convex greedy embedding that given a 3-connected planar graph G=(V,E)G = (V,E), an embedding x: V \to \bbbr^2 of GG is a planar convex greedy embedding if and only if, in the embedding xx, weight of the maximum weight spanning tree (TT) and weight of the minimum weight spanning tree (\func{MST}) satisfies \WT(T)/\WT(\func{MST}) \leq (\card{V}-1)^{1 - \delta}, for some 0<δ10 < \delta \leq 1.Comment: 19 pages, A short version of this paper has been accepted for presentation in FCT 2009 - 17th International Symposium on Fundamentals of Computation Theor

    Hardness of Exact Distance Queries in Sparse Graphs Through Hub Labeling

    Full text link
    A distance labeling scheme is an assignment of bit-labels to the vertices of an undirected, unweighted graph such that the distance between any pair of vertices can be decoded solely from their labels. An important class of distance labeling schemes is that of hub labelings, where a node vGv \in G stores its distance to the so-called hubs SvVS_v \subseteq V, chosen so that for any u,vVu,v \in V there is wSuSvw \in S_u \cap S_v belonging to some shortest uvuv path. Notice that for most existing graph classes, the best distance labelling constructions existing use at some point a hub labeling scheme at least as a key building block. Our interest lies in hub labelings of sparse graphs, i.e., those with E(G)=O(n)|E(G)| = O(n), for which we show a lowerbound of n2O(logn)\frac{n}{2^{O(\sqrt{\log n})}} for the average size of the hubsets. Additionally, we show a hub-labeling construction for sparse graphs of average size O(nRS(n)c)O(\frac{n}{RS(n)^{c}}) for some 0<c<10 < c < 1, where RS(n)RS(n) is the so-called Ruzsa-Szemer{\'e}di function, linked to structure of induced matchings in dense graphs. This implies that further improving the lower bound on hub labeling size to n2(logn)o(1)\frac{n}{2^{(\log n)^{o(1)}}} would require a breakthrough in the study of lower bounds on RS(n)RS(n), which have resisted substantial improvement in the last 70 years. For general distance labeling of sparse graphs, we show a lowerbound of 12O(logn)SumIndex(n)\frac{1}{2^{O(\sqrt{\log n})}} SumIndex(n), where SumIndex(n)SumIndex(n) is the communication complexity of the Sum-Index problem over ZnZ_n. Our results suggest that the best achievable hub-label size and distance-label size in sparse graphs may be Θ(n2(logn)c)\Theta(\frac{n}{2^{(\log n)^c}}) for some 0<c<10<c < 1
    corecore