1,240 research outputs found

    Lower Bounds for Two-Sample Structural Change Detection in Ising and Gaussian Models

    Full text link
    The change detection problem is to determine if the Markov network structures of two Markov random fields differ from one another given two sets of samples drawn from the respective underlying distributions. We study the trade-off between the sample sizes and the reliability of change detection, measured as a minimax risk, for the important cases of the Ising models and the Gaussian Markov random fields restricted to the models which have network structures with pp nodes and degree at most dd, and obtain information-theoretic lower bounds for reliable change detection over these models. We show that for the Ising model, Ω(d2(logd)2logp)\Omega\left(\frac{d^2}{(\log d)^2}\log p\right) samples are required from each dataset to detect even the sparsest possible changes, and that for the Gaussian, Ω(γ2log(p))\Omega\left( \gamma^{-2} \log(p)\right) samples are required from each dataset to detect change, where γ\gamma is the smallest ratio of off-diagonal to diagonal terms in the precision matrices of the distributions. These bounds are compared to the corresponding results in structure learning, and closely match them under mild conditions on the model parameters. Thus, our change detection bounds inherit partial tightness from the structure learning schemes in previous literature, demonstrating that in certain parameter regimes, the naive structure learning based approach to change detection is minimax optimal up to constant factors.Comment: Presented at the 55th Annual Allerton Conference on Communication, Control, and Computing, Oct. 201

    Learning Graphs from Linear Measurements: Fundamental Trade-offs and Applications

    Get PDF
    We consider a specific graph learning task: reconstructing a symmetric matrix that represents an underlying graph using linear measurements. We present a sparsity characterization for distributions of random graphs (that are allowed to contain high-degree nodes), based on which we study fundamental trade-offs between the number of measurements, the complexity of the graph class, and the probability of error. We first derive a necessary condition on the number of measurements. Then, by considering a three-stage recovery scheme, we give a sufficient condition for recovery. Furthermore, assuming the measurements are Gaussian IID, we prove upper and lower bounds on the (worst-case) sample complexity for both noisy and noiseless recovery. In the special cases of the uniform distribution on trees with n nodes and the Erdős-Rényi (n,p) class, the fundamental trade-offs are tight up to multiplicative factors with noiseless measurements. In addition, for practical applications, we design and implement a polynomial-time (in n ) algorithm based on the three-stage recovery scheme. Experiments show that the heuristic algorithm outperforms basis pursuit on star graphs. We apply the heuristic algorithm to learn admittance matrices in electric grids. Simulations for several canonical graph classes and IEEE power system test cases demonstrate the effectiveness and robustness of the proposed algorithm for parameter reconstruction
    corecore