66 research outputs found

    A note on a problem in communication complexity

    Full text link
    In this note, we prove a version of Tarui's Theorem in communication complexity, namely PHcc⊆BP⋅PPccPH^{cc} \subseteq BP\cdot PP^{cc}. Consequently, every measure for PPccPP^{cc} leads to a measure for PHccPH^{cc}, subsuming a result of Linial and Shraibman that problems with high mc-rigidity lie outside the polynomial hierarchy. By slightly changing the definition of mc-rigidity (arbitrary instead of uniform distribution), it is then evident that the class MccM^{cc} of problems with low mc-rigidity equals BP⋅PPccBP\cdot PP^{cc}. As BP⋅PPcc⊆PSPACEccBP\cdot PP^{cc} \subseteq PSPACE^{cc}, this rules out the possibility, that had been left open, that even polynomial space is contained in MccM^{cc}

    Improved Quantum Communication Complexity Bounds for Disjointness and Equality

    Get PDF
    We prove new bounds on the quantum communication complexity of the disjointness and equality problems. For the case of exact and non-deterministic protocols we show that these complexities are all equal to n+1, the previous best lower bound being n/2. We show this by improving a general bound for non-deterministic protocols of de Wolf. We also give an O(sqrt{n}c^{log^* n})-qubit bounded-error protocol for disjointness, modifying and improving the earlier O(sqrt{n}log n) protocol of Buhrman, Cleve, and Wigderson, and prove an Omega(sqrt{n}) lower bound for a large class of protocols that includes the BCW-protocol as well as our new protocol.Comment: 11 pages LaTe

    Separating NOF communication complexity classes RP and NP

    Full text link
    We provide a non-explicit separation of the number-on-forehead communication complexity classes RP and NP when the number of players is up to \delta log(n) for any \delta<1. Recent lower bounds on Set-Disjointness [LS08,CA08] provide an explicit separation between these classes when the number of players is only up to o(loglog(n))

    Unbounded-Error Classical and Quantum Communication Complexity

    Full text link
    Since the seminal work of Paturi and Simon \cite[FOCS'84 & JCSS'86]{PS86}, the unbounded-error classical communication complexity of a Boolean function has been studied based on the arrangement of points and hyperplanes. Recently, \cite[ICALP'07]{INRY07} found that the unbounded-error {\em quantum} communication complexity in the {\em one-way communication} model can also be investigated using the arrangement, and showed that it is exactly (without a difference of even one qubit) half of the classical one-way communication complexity. In this paper, we extend the arrangement argument to the {\em two-way} and {\em simultaneous message passing} (SMP) models. As a result, we show similarly tight bounds of the unbounded-error two-way/one-way/SMP quantum/classical communication complexities for {\em any} partial/total Boolean function, implying that all of them are equivalent up to a multiplicative constant of four. Moreover, the arrangement argument is also used to show that the gap between {\em weakly} unbounded-error quantum and classical communication complexities is at most a factor of three.Comment: 11 pages. To appear at Proc. ISAAC 200
    • …
    corecore