5,692 research outputs found

    Dovetail: Stronger Anonymity in Next-Generation Internet Routing

    Full text link
    Current low-latency anonymity systems use complex overlay networks to conceal a user's IP address, introducing significant latency and network efficiency penalties compared to normal Internet usage. Rather than obfuscating network identity through higher level protocols, we propose a more direct solution: a routing protocol that allows communication without exposing network identity, providing a strong foundation for Internet privacy, while allowing identity to be defined in those higher level protocols where it adds value. Given current research initiatives advocating "clean slate" Internet designs, an opportunity exists to design an internetwork layer routing protocol that decouples identity from network location and thereby simplifies the anonymity problem. Recently, Hsiao et al. proposed such a protocol (LAP), but it does not protect the user against a local eavesdropper or an untrusted ISP, which will not be acceptable for many users. Thus, we propose Dovetail, a next-generation Internet routing protocol that provides anonymity against an active attacker located at any single point within the network, including the user's ISP. A major design challenge is to provide this protection without including an application-layer proxy in data transmission. We address this challenge in path construction by using a matchmaker node (an end host) to overlap two path segments at a dovetail node (a router). The dovetail then trims away part of the path so that data transmission bypasses the matchmaker. Additional design features include the choice of many different paths through the network and the joining of path segments without requiring a trusted third party. We develop a systematic mechanism to measure the topological anonymity of our designs, and we demonstrate the privacy and efficiency of our proposal by simulation, using a model of the complete Internet at the AS-level

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems

    HORNET: High-speed Onion Routing at the Network Layer

    Get PDF
    We present HORNET, a system that enables high-speed end-to-end anonymous channels by leveraging next generation network architectures. HORNET is designed as a low-latency onion routing system that operates at the network layer thus enabling a wide range of applications. Our system uses only symmetric cryptography for data forwarding yet requires no per-flow state on intermediate nodes. This design enables HORNET nodes to process anonymous traffic at over 93 Gb/s. HORNET can also scale as required, adding minimal processing overhead per additional anonymous channel. We discuss design and implementation details, as well as a performance and security evaluation.Comment: 14 pages, 5 figure

    Evaluation of Anonymized ONS Queries

    Full text link
    Electronic Product Code (EPC) is the basis of a pervasive infrastructure for the automatic identification of objects on supply chain applications (e.g., pharmaceutical or military applications). This infrastructure relies on the use of the (1) Radio Frequency Identification (RFID) technology to tag objects in motion and (2) distributed services providing information about objects via the Internet. A lookup service, called the Object Name Service (ONS) and based on the use of the Domain Name System (DNS), can be publicly accessed by EPC applications looking for information associated with tagged objects. Privacy issues may affect corporate infrastructures based on EPC technologies if their lookup service is not properly protected. A possible solution to mitigate these issues is the use of online anonymity. We present an evaluation experiment that compares the of use of Tor (The second generation Onion Router) on a global ONS/DNS setup, with respect to benefits, limitations, and latency.Comment: 14 page

    Adaptive Traffic Fingerprinting for Darknet Threat Intelligence

    Full text link
    Darknet technology such as Tor has been used by various threat actors for organising illegal activities and data exfiltration. As such, there is a case for organisations to block such traffic, or to try and identify when it is used and for what purposes. However, anonymity in cyberspace has always been a domain of conflicting interests. While it gives enough power to nefarious actors to masquerade their illegal activities, it is also the cornerstone to facilitate freedom of speech and privacy. We present a proof of concept for a novel algorithm that could form the fundamental pillar of a darknet-capable Cyber Threat Intelligence platform. The solution can reduce anonymity of users of Tor, and considers the existing visibility of network traffic before optionally initiating targeted or widespread BGP interception. In combination with server HTTP response manipulation, the algorithm attempts to reduce the candidate data set to eliminate client-side traffic that is most unlikely to be responsible for server-side connections of interest. Our test results show that MITM manipulated server responses lead to expected changes received by the Tor client. Using simulation data generated by shadow, we show that the detection scheme is effective with false positive rate of 0.001, while sensitivity detecting non-targets was 0.016+-0.127. Our algorithm could assist collaborating organisations willing to share their threat intelligence or cooperate during investigations.Comment: 26 page
    • …
    corecore