1,861 research outputs found

    Tensor train rank minimization with nonlocal self-similarity for tensor completion

    Full text link
    The tensor train (TT) rank has received increasing attention in tensor completion due to its ability to capture the global correlation of high-order tensors (order>3\textrm{order} >3). For third order visual data, direct TT rank minimization has not exploited the potential of TT rank for high-order tensors. The TT rank minimization accompany with \emph{ket augmentation}, which transforms a lower-order tensor (e.g., visual data) into a higher-order tensor, suffers from serious block-artifacts. To tackle this issue, we suggest the TT rank minimization with nonlocal self-similarity for tensor completion by simultaneously exploring the spatial, temporal/spectral, and nonlocal redundancy in visual data. More precisely, the TT rank minimization is performed on a formed higher-order tensor called group by stacking similar cubes, which naturally and fully takes advantage of the ability of TT rank for high-order tensors. Moreover, the perturbation analysis for the TT low-rankness of each group is established. We develop the alternating direction method of multipliers tailored for the specific structure to solve the proposed model. Extensive experiments demonstrate that the proposed method is superior to several existing state-of-the-art methods in terms of both qualitative and quantitative measures

    Concatenated image completion via tensor augmentation and completion

    Full text link
    This paper proposes a novel framework called concatenated image completion via tensor augmentation and completion (ICTAC), which recovers missing entries of color images with high accuracy. Typical images are second- or third-order tensors (2D/3D) depending if they are grayscale or color, hence tensor completion algorithms are ideal for their recovery. The proposed framework performs image completion by concatenating copies of a single image that has missing entries into a third-order tensor, applying a dimensionality augmentation technique to the tensor, utilizing a tensor completion algorithm for recovering its missing entries, and finally extracting the recovered image from the tensor. The solution relies on two key components that have been recently proposed to take advantage of the tensor train (TT) rank: A tensor augmentation tool called ket augmentation (KA) that represents a low-order tensor by a higher-order tensor, and the algorithm tensor completion by parallel matrix factorization via tensor train (TMac-TT), which has been demonstrated to outperform state-of-the-art tensor completion algorithms. Simulation results for color image recovery show the clear advantage of our framework against current state-of-the-art tensor completion algorithms.Comment: 7 pages, 6 figures, submitted to ICSPCS 201

    Efficient tensor completion for color image and video recovery: Low-rank tensor train

    Full text link
    This paper proposes a novel approach to tensor completion, which recovers missing entries of data represented by tensors. The approach is based on the tensor train (TT) rank, which is able to capture hidden information from tensors thanks to its definition from a well-balanced matricization scheme. Accordingly, new optimization formulations for tensor completion are proposed as well as two new algorithms for their solution. The first one called simple low-rank tensor completion via tensor train (SiLRTC-TT) is intimately related to minimizing a nuclear norm based on TT rank. The second one is from a multilinear matrix factorization model to approximate the TT rank of a tensor, and is called tensor completion by parallel matrix factorization via tensor train (TMac-TT). A tensor augmentation scheme of transforming a low-order tensor to higher-orders is also proposed to enhance the effectiveness of SiLRTC-TT and TMac-TT. Simulation results for color image and video recovery show the clear advantage of our method over all other methods.Comment: Submitted to the IEEE Transactions on Image Processing. arXiv admin note: substantial text overlap with arXiv:1601.0108

    High-order Tensor Completion for Data Recovery via Sparse Tensor-train Optimization

    Full text link
    In this paper, we aim at the problem of tensor data completion. Tensor-train decomposition is adopted because of its powerful representation ability and linear scalability to tensor order. We propose an algorithm named Sparse Tensor-train Optimization (STTO) which considers incomplete data as sparse tensor and uses first-order optimization method to find the factors of tensor-train decomposition. Our algorithm is shown to perform well in simulation experiments at both low-order cases and high-order cases. We also employ a tensorization method to transform data to a higher-order form to enhance the performance of our algorithm. The results of image recovery experiments in various cases manifest that our method outperforms other completion algorithms. Especially when the missing rate is very high, e.g., 90\% to 99\%, our method is significantly better than the state-of-the-art methods.Comment: 5 pages (include 1 page of reference) ICASSP 201

    Scaled Nuclear Norm Minimization for Low-Rank Tensor Completion

    Full text link
    Minimizing the nuclear norm of a matrix has been shown to be very efficient in reconstructing a low-rank sampled matrix. Furthermore, minimizing the sum of nuclear norms of matricizations of a tensor has been shown to be very efficient in recovering a low-Tucker-rank sampled tensor. In this paper, we propose to recover a low-TT-rank sampled tensor by minimizing a weighted sum of nuclear norms of unfoldings of the tensor. We provide numerical results to show that our proposed method requires significantly less number of samples to recover to the original tensor in comparison with simply minimizing the sum of nuclear norms since the structure of the unfoldings in the TT tensor model is fundamentally different from that of matricizations in the Tucker tensor model

    Efficient tensor completion: Low-rank tensor train

    Full text link
    This paper proposes a novel formulation of the tensor completion problem to impute missing entries of data represented by tensors. The formulation is introduced in terms of tensor train (TT) rank which can effectively capture global information of tensors thanks to its construction by a well-balanced matricization scheme. Two algorithms are proposed to solve the corresponding tensor completion problem. The first one called simple low-rank tensor completion via tensor train (SiLRTC-TT) is intimately related to minimizing the TT nuclear norm. The second one is based on a multilinear matrix factorization model to approximate the TT rank of the tensor and called tensor completion by parallel matrix factorization via tensor train (TMac-TT). These algorithms are applied to complete both synthetic and real world data tensors. Simulation results of synthetic data show that the proposed algorithms are efficient in estimating missing entries for tensors with either low Tucker rank or TT rank while Tucker-based algorithms are only comparable in the case of low Tucker rank tensors. When applied to recover color images represented by ninth-order tensors augmented from third-order ones, the proposed algorithms outperforms the Tucker-based algorithms.Comment: 11 pages, 9 figure

    Tensor Ring Decomposition with Rank Minimization on Latent Space: An Efficient Approach for Tensor Completion

    Full text link
    In tensor completion tasks, the traditional low-rank tensor decomposition models suffer from the laborious model selection problem due to their high model sensitivity. In particular, for tensor ring (TR) decomposition, the number of model possibilities grows exponentially with the tensor order, which makes it rather challenging to find the optimal TR decomposition. In this paper, by exploiting the low-rank structure of the TR latent space, we propose a novel tensor completion method which is robust to model selection. In contrast to imposing the low-rank constraint on the data space, we introduce nuclear norm regularization on the latent TR factors, resulting in the optimization step using singular value decomposition (SVD) being performed at a much smaller scale. By leveraging the alternating direction method of multipliers (ADMM) scheme, the latent TR factors with optimal rank and the recovered tensor can be obtained simultaneously. Our proposed algorithm is shown to effectively alleviate the burden of TR-rank selection, thereby greatly reducing the computational cost. The extensive experimental results on both synthetic and real-world data demonstrate the superior performance and efficiency of the proposed approach against the state-of-the-art algorithms

    Robust Low-Rank Tensor Ring Completion

    Full text link
    Low-rank tensor completion recovers missing entries based on different tensor decompositions. Due to its outstanding performance in exploiting some higher-order data structure, low rank tensor ring has been applied in tensor completion. To further deal with its sensitivity to sparse component as it does in tensor principle component analysis, we propose robust tensor ring completion (RTRC), which separates latent low-rank tensor component from sparse component with limited number of measurements. The low rank tensor component is constrained by the weighted sum of nuclear norms of its balanced unfoldings, while the sparse component is regularized by its l1 norm. We analyze the RTRC model and gives the exact recovery guarantee. The alternating direction method of multipliers is used to divide the problem into several sub-problems with fast solutions. In numerical experiments, we verify the recovery condition of the proposed method on synthetic data, and show the proposed method outperforms the state-of-the-art ones in terms of both accuracy and computational complexity in a number of real-world data based tasks, i.e., light-field image recovery, shadow removal in face images, and background extraction in color video

    Tensor-Ring Nuclear Norm Minimization and Application for Visual Data Completion

    Full text link
    Tensor ring (TR) decomposition has been successfully used to obtain the state-of-the-art performance in the visual data completion problem. However, the existing TR-based completion methods are severely non-convex and computationally demanding. In addition, the determination of the optimal TR rank is a tough work in practice. To overcome these drawbacks, we first introduce a class of new tensor nuclear norms by using tensor circular unfolding. Then we theoretically establish connection between the rank of the circularly-unfolded matrices and the TR ranks. We also develop an efficient tensor completion algorithm by minimizing the proposed tensor nuclear norm. Extensive experimental results demonstrate that our proposed tensor completion method outperforms the conventional tensor completion methods in the image/video in-painting problem with striped missing values.Comment: This paper has been accepted by ICASSP 201

    Tensor Completion Algorithms in Big Data Analytics

    Full text link
    Tensor completion is a problem of filling the missing or unobserved entries of partially observed tensors. Due to the multidimensional character of tensors in describing complex datasets, tensor completion algorithms and their applications have received wide attention and achievement in areas like data mining, computer vision, signal processing, and neuroscience. In this survey, we provide a modern overview of recent advances in tensor completion algorithms from the perspective of big data analytics characterized by diverse variety, large volume, and high velocity. We characterize these advances from four perspectives: general tensor completion algorithms, tensor completion with auxiliary information (variety), scalable tensor completion algorithms (volume), and dynamic tensor completion algorithms (velocity). Further, we identify several tensor completion applications on real-world data-driven problems and present some common experimental frameworks popularized in the literature. Our goal is to summarize these popular methods and introduce them to researchers and practitioners for promoting future research and applications. We conclude with a discussion of key challenges and promising research directions in this community for future exploration
    • …
    corecore