4,192 research outputs found

    LogBase: A Scalable Log-structured Database System in the Cloud

    Full text link
    Numerous applications such as financial transactions (e.g., stock trading) are write-heavy in nature. The shift from reads to writes in web applications has also been accelerating in recent years. Write-ahead-logging is a common approach for providing recovery capability while improving performance in most storage systems. However, the separation of log and application data incurs write overheads observed in write-heavy environments and hence adversely affects the write throughput and recovery time in the system. In this paper, we introduce LogBase - a scalable log-structured database system that adopts log-only storage for removing the write bottleneck and supporting fast system recovery. LogBase is designed to be dynamically deployed on commodity clusters to take advantage of elastic scaling property of cloud environments. LogBase provides in-memory multiversion indexes for supporting efficient access to data maintained in the log. LogBase also supports transactions that bundle read and write operations spanning across multiple records. We implemented the proposed system and compared it with HBase and a disk-based log-structured record-oriented system modeled after RAMCloud. The experimental results show that LogBase is able to provide sustained write throughput, efficient data access out of the cache, and effective system recovery.Comment: VLDB201

    Extending Eventually Consistent Cloud Databases for Enforcing Numeric Invariants

    Get PDF
    Geo-replicated databases often operate under the principle of eventual consistency to offer high-availability with low latency on a simple key/value store abstraction. Recently, some have adopted commutative data types to provide seamless reconciliation for special purpose data types, such as counters. Despite this, the inability to enforce numeric invariants across all replicas still remains a key shortcoming of relying on the limited guarantees of eventual consistency storage. We present a new replicated data type, called bounded counter, which adds support for numeric invariants to eventually consistent geo-replicated databases. We describe how this can be implemented on top of existing cloud stores without modifying them, using Riak as an example. Our approach adapts ideas from escrow transactions to devise a solution that is decentralized, fault-tolerant and fast. Our evaluation shows much lower latency and better scalability than the traditional approach of using strong consistency to enforce numeric invariants, thus alleviating the tension between consistency and availability

    Write-limited sorts and joins for persistent memory

    Get PDF
    To mitigate the impact of the widening gap between the memory needs of CPUs and what standard memory technology can deliver, system architects have introduced a new class of memory technology termed persistent memory. Persistent memory is byteaddressable, but exhibits asymmetric I/O: writes are typically one order of magnitude more expensive than reads. Byte addressability combined with I/O asymmetry render the performance profile of persistent memory unique. Thus, it becomes imperative to find new ways to seamlessly incorporate it into database systems. We do so in the context of query processing. We focus on the fundamental operations of sort and join processing. We introduce the notion of write-limited algorithms that effectively minimize the I/O cost. We give a high-level API that enables the system to dynamically optimize the workflow of the algorithms; or, alternatively, allows the developer to tune the write profile of the algorithms. We present four different techniques to incorporate persistent memory into the database processing stack in light of this API. We have implemented and extensively evaluated all our proposals. Our results show that the algorithms deliver on their promise of I/O-minimality and tunable performance. We showcase the merits and deficiencies of each implementation technique, thus taking a solid first step towards incorporating persistent memory into query processing. 1

    TARANET: Traffic-Analysis Resistant Anonymity at the NETwork layer

    Full text link
    Modern low-latency anonymity systems, no matter whether constructed as an overlay or implemented at the network layer, offer limited security guarantees against traffic analysis. On the other hand, high-latency anonymity systems offer strong security guarantees at the cost of computational overhead and long delays, which are excessive for interactive applications. We propose TARANET, an anonymity system that implements protection against traffic analysis at the network layer, and limits the incurred latency and overhead. In TARANET's setup phase, traffic analysis is thwarted by mixing. In the data transmission phase, end hosts and ASes coordinate to shape traffic into constant-rate transmission using packet splitting. Our prototype implementation shows that TARANET can forward anonymous traffic at over 50~Gbps using commodity hardware

    FLICK: developing and running application-specific network services

    Get PDF
    Data centre networks are increasingly programmable, with application-specific network services proliferating, from custom load-balancers to middleboxes providing caching and aggregation. Developers must currently implement these services using traditional low-level APIs, which neither support natural operations on application data nor provide efficient performance isolation. We describe FLICK, a framework for the programming and execution of application-specific network services on multi-core CPUs. Developers write network services in the FLICK language, which offers high-level processing constructs and application-relevant data types. FLICK programs are translated automatically to efficient, parallel task graphs, implemented in C++ on top of a user-space TCP stack. Task graphs have bounded resource usage at runtime, which means that the graphs of multiple services can execute concurrently without interference using cooperative scheduling. We evaluate FLICK with several services (an HTTP load-balancer, a Memcached router and a Hadoop data aggregator), showing that it achieves good performance while reducing development effort
    corecore