1,462 research outputs found

    Low-Rank Inducing Norms with Optimality Interpretations

    Full text link
    Optimization problems with rank constraints appear in many diverse fields such as control, machine learning and image analysis. Since the rank constraint is non-convex, these problems are often approximately solved via convex relaxations. Nuclear norm regularization is the prevailing convexifying technique for dealing with these types of problem. This paper introduces a family of low-rank inducing norms and regularizers which includes the nuclear norm as a special case. A posteriori guarantees on solving an underlying rank constrained optimization problem with these convex relaxations are provided. We evaluate the performance of the low-rank inducing norms on three matrix completion problems. In all examples, the nuclear norm heuristic is outperformed by convex relaxations based on other low-rank inducing norms. For two of the problems there exist low-rank inducing norms that succeed in recovering the partially unknown matrix, while the nuclear norm fails. These low-rank inducing norms are shown to be representable as semi-definite programs. Moreover, these norms have cheaply computable proximal mappings, which makes it possible to also solve problems of large size using first-order methods

    PhasePack: A Phase Retrieval Library

    Full text link
    Phase retrieval deals with the estimation of complex-valued signals solely from the magnitudes of linear measurements. While there has been a recent explosion in the development of phase retrieval algorithms, the lack of a common interface has made it difficult to compare new methods against the state-of-the-art. The purpose of PhasePack is to create a common software interface for a wide range of phase retrieval algorithms and to provide a common testbed using both synthetic data and empirical imaging datasets. PhasePack is able to benchmark a large number of recent phase retrieval methods against one another to generate comparisons using a range of different performance metrics. The software package handles single method testing as well as multiple method comparisons. The algorithm implementations in PhasePack differ slightly from their original descriptions in the literature in order to achieve faster speed and improved robustness. In particular, PhasePack uses adaptive stepsizes, line-search methods, and fast eigensolvers to speed up and automate convergence

    Robust Low-Rank Subspace Segmentation with Semidefinite Guarantees

    Full text link
    Recently there is a line of research work proposing to employ Spectral Clustering (SC) to segment (group){Throughout the paper, we use segmentation, clustering, and grouping, and their verb forms, interchangeably.} high-dimensional structural data such as those (approximately) lying on subspaces {We follow {liu2010robust} and use the term "subspace" to denote both linear subspaces and affine subspaces. There is a trivial conversion between linear subspaces and affine subspaces as mentioned therein.} or low-dimensional manifolds. By learning the affinity matrix in the form of sparse reconstruction, techniques proposed in this vein often considerably boost the performance in subspace settings where traditional SC can fail. Despite the success, there are fundamental problems that have been left unsolved: the spectrum property of the learned affinity matrix cannot be gauged in advance, and there is often one ugly symmetrization step that post-processes the affinity for SC input. Hence we advocate to enforce the symmetric positive semidefinite constraint explicitly during learning (Low-Rank Representation with Positive SemiDefinite constraint, or LRR-PSD), and show that factually it can be solved in an exquisite scheme efficiently instead of general-purpose SDP solvers that usually scale up poorly. We provide rigorous mathematical derivations to show that, in its canonical form, LRR-PSD is equivalent to the recently proposed Low-Rank Representation (LRR) scheme {liu2010robust}, and hence offer theoretic and practical insights to both LRR-PSD and LRR, inviting future research. As per the computational cost, our proposal is at most comparable to that of LRR, if not less. We validate our theoretic analysis and optimization scheme by experiments on both synthetic and real data sets.Comment: 10 pages, 4 figures. Accepted by ICDM Workshop on Optimization Based Methods for Emerging Data Mining Problems (OEDM), 2010. Main proof simplified and typos corrected. Experimental data slightly adde
    corecore