33 research outputs found

    Low-rank Approximation of Linear Maps

    Full text link
    This work provides closed-form solutions and minimal achievable errors for a large class of low-rank approximation problems in Hilbert spaces. The proposed theorem generalizes to the case of linear bounded operators and p-th Schatten norms previous results obtained in the finite dimensional case for the Frobenius norm. The theorem is illustrated in various settings, including low-rank approximation problems with respect to the trace norm, the 2-induced norm or the Hilbert-Schmidt norm. The theorem provides also the basics for the design of tractable algorithms for kernel-based or continuous DM

    Principal bundle structure of matrix manifolds

    Full text link
    In this paper, we introduce a new geometric description of the manifolds of matrices of fixed rank. The starting point is a geometric description of the Grassmann manifold Gr(Rk)\mathbb{G}_r(\mathbb{R}^k) of linear subspaces of dimension r<kr<k in Rk\mathbb{R}^k which avoids the use of equivalence classes. The set Gr(Rk)\mathbb{G}_r(\mathbb{R}^k) is equipped with an atlas which provides it with the structure of an analytic manifold modelled on R(k−r)×r\mathbb{R}^{(k-r)\times r}. Then we define an atlas for the set Mr(Rk×r)\mathcal{M}_r(\mathbb{R}^{k \times r}) of full rank matrices and prove that the resulting manifold is an analytic principal bundle with base Gr(Rk)\mathbb{G}_r(\mathbb{R}^k) and typical fibre GLr\mathrm{GL}_r, the general linear group of invertible matrices in Rk×k\mathbb{R}^{k\times k}. Finally, we define an atlas for the set Mr(Rn×m)\mathcal{M}_r(\mathbb{R}^{n \times m}) of non-full rank matrices and prove that the resulting manifold is an analytic principal bundle with base Gr(Rn)×Gr(Rm)\mathbb{G}_r(\mathbb{R}^n) \times \mathbb{G}_r(\mathbb{R}^m) and typical fibre GLr\mathrm{GL}_r. The atlas of Mr(Rn×m)\mathcal{M}_r(\mathbb{R}^{n \times m}) is indexed on the manifold itself, which allows a natural definition of a neighbourhood for a given matrix, this neighbourhood being proved to possess the structure of a Lie group. Moreover, the set Mr(Rn×m)\mathcal{M}_r(\mathbb{R}^{n \times m}) equipped with the topology induced by the atlas is proven to be an embedded submanifold of the matrix space Rn×m\mathbb{R}^{n \times m} equipped with the subspace topology. The proposed geometric description then results in a description of the matrix space Rn×m\mathbb{R}^{n \times m}, seen as the union of manifolds Mr(Rn×m)\mathcal{M}_r(\mathbb{R}^{n \times m}), as an analytic manifold equipped with a topology for which the matrix rank is a continuous map

    Convergence results for projected line-search methods on varieties of low-rank matrices via \L{}ojasiewicz inequality

    Full text link
    The aim of this paper is to derive convergence results for projected line-search methods on the real-algebraic variety M≤k\mathcal{M}_{\le k} of real m×nm \times n matrices of rank at most kk. Such methods extend Riemannian optimization methods, which are successfully used on the smooth manifold Mk\mathcal{M}_k of rank-kk matrices, to its closure by taking steps along gradient-related directions in the tangent cone, and afterwards projecting back to M≤k\mathcal{M}_{\le k}. Considering such a method circumvents the difficulties which arise from the nonclosedness and the unbounded curvature of Mk\mathcal{M}_k. The pointwise convergence is obtained for real-analytic functions on the basis of a \L{}ojasiewicz inequality for the projection of the antigradient to the tangent cone. If the derived limit point lies on the smooth part of M≤k\mathcal{M}_{\le k}, i.e. in Mk\mathcal{M}_k, this boils down to more or less known results, but with the benefit that asymptotic convergence rate estimates (for specific step-sizes) can be obtained without an a priori curvature bound, simply from the fact that the limit lies on a smooth manifold. At the same time, one can give a convincing justification for assuming critical points to lie in Mk\mathcal{M}_k: if XX is a critical point of ff on M≤k\mathcal{M}_{\le k}, then either XX has rank kk, or ∇f(X)=0\nabla f(X) = 0
    corecore