5,517 research outputs found

    Tensor Completion Algorithms in Big Data Analytics

    Full text link
    Tensor completion is a problem of filling the missing or unobserved entries of partially observed tensors. Due to the multidimensional character of tensors in describing complex datasets, tensor completion algorithms and their applications have received wide attention and achievement in areas like data mining, computer vision, signal processing, and neuroscience. In this survey, we provide a modern overview of recent advances in tensor completion algorithms from the perspective of big data analytics characterized by diverse variety, large volume, and high velocity. We characterize these advances from four perspectives: general tensor completion algorithms, tensor completion with auxiliary information (variety), scalable tensor completion algorithms (volume), and dynamic tensor completion algorithms (velocity). Further, we identify several tensor completion applications on real-world data-driven problems and present some common experimental frameworks popularized in the literature. Our goal is to summarize these popular methods and introduce them to researchers and practitioners for promoting future research and applications. We conclude with a discussion of key challenges and promising research directions in this community for future exploration

    Exact tensor completion using t-SVD

    Full text link
    In this paper we focus on the problem of completion of multidimensional arrays (also referred to as tensors) from limited sampling. Our approach is based on a recently proposed tensor-Singular Value Decomposition (t-SVD) [1]. Using this factorization one can derive notion of tensor rank, referred to as the tensor tubal rank, which has optimality properties similar to that of matrix rank derived from SVD. As shown in [2] some multidimensional data, such as panning video sequences exhibit low tensor tubal rank and we look at the problem of completing such data under random sampling of the data cube. We show that by solving a convex optimization problem, which minimizes the tensor nuclear norm obtained as the convex relaxation of tensor tubal rank, one can guarantee recovery with overwhelming probability as long as samples in proportion to the degrees of freedom in t-SVD are observed. In this sense our results are order-wise optimal. The conditions under which this result holds are very similar to the incoherency conditions for the matrix completion, albeit we define incoherency under the algebraic set-up of t-SVD. We show the performance of the algorithm on some real data sets and compare it with other existing approaches based on tensor flattening and Tucker decomposition.Comment: 16 pages, 5 figures, 2 table

    Scaled Nuclear Norm Minimization for Low-Rank Tensor Completion

    Full text link
    Minimizing the nuclear norm of a matrix has been shown to be very efficient in reconstructing a low-rank sampled matrix. Furthermore, minimizing the sum of nuclear norms of matricizations of a tensor has been shown to be very efficient in recovering a low-Tucker-rank sampled tensor. In this paper, we propose to recover a low-TT-rank sampled tensor by minimizing a weighted sum of nuclear norms of unfoldings of the tensor. We provide numerical results to show that our proposed method requires significantly less number of samples to recover to the original tensor in comparison with simply minimizing the sum of nuclear norms since the structure of the unfoldings in the TT tensor model is fundamentally different from that of matricizations in the Tucker tensor model

    A Tensor Completion Approach for Efficient and Robust Fingerprint-based Indoor Localization

    Full text link
    The localization technology is important for the development of indoor location-based services (LBS). The radio frequency (RF) fingerprint-based localization is one of the most promising approaches. However, it is challenging to apply this localization to real-world environments since it is time-consuming and labor-intensive to construct a fingerprint database as a prior for localization. Another challenge is that the presence of anomaly readings in the fingerprints reduces the localization accuracy. To address these two challenges, we propose an efficient and robust indoor localization approach. First, we model the fingerprint database as a 3-D tensor, which represents the relationships between fingerprints, locations and indices of access points. Second, we introduce a tensor decomposition model for robust fingerprint data recovery, which decomposes a partial observation tensor as the superposition of a low-rank tensor and a spare anomaly tensor. Third, we exploit the alternating direction method of multipliers (ADMM) to solve the convex optimization problem of tensor-nuclear-norm completion for the anomaly case. Finally, we verify the proposed approach on a ground truth data set collected in an office building with size 80m times 20m. Experiment results show that to achieve a same error rate 4%, the sampling rate of our approach is only 10%, while it is 60% for the state-of-the-art approach. Moreover, the proposed approach leads to a more accurate localization (nearly 20%, 0.6m improvement) over the compared approach.Comment: 6 pages, 5 figure

    Beyond Low Rank: A Data-Adaptive Tensor Completion Method

    Full text link
    Low rank tensor representation underpins much of recent progress in tensor completion. In real applications, however, this approach is confronted with two challenging problems, namely (1) tensor rank determination; (2) handling real tensor data which only approximately fulfils the low-rank requirement. To address these two issues, we develop a data-adaptive tensor completion model which explicitly represents both the low-rank and non-low-rank structures in a latent tensor. Representing the non-low-rank structure separately from the low-rank one allows priors which capture the important distinctions between the two, thus enabling more accurate modelling, and ultimately, completion. Through defining a new tensor rank, we develop a sparsity induced prior for the low-rank structure, with which the tensor rank can be automatically determined. The prior for the non-low-rank structure is established based on a mixture of Gaussians which is shown to be flexible enough, and powerful enough, to inform the completion process for a variety of real tensor data. With these two priors, we develop a Bayesian minimum mean squared error estimate (MMSE) framework for inference which provides the posterior mean of missing entries as well as their uncertainty. Compared with the state-of-the-art methods in various applications, the proposed model produces more accurate completion results.Comment: 14 pages, 5 figure

    Sobol Tensor Trains for Global Sensitivity Analysis

    Full text link
    Sobol indices are a widespread quantitative measure for variance-based global sensitivity analysis, but computing and utilizing them remains challenging for high-dimensional systems. We propose the tensor train decomposition (TT) as a unified framework for surrogate modeling and global sensitivity analysis via Sobol indices. We first overview several strategies to build a TT surrogate of the unknown true model using either an adaptive sampling strategy or a predefined set of samples. We then introduce and derive the Sobol tensor train, which compactly represents the Sobol indices for all possible joint variable interactions which are infeasible to compute and store explicitly. Our formulation allows efficient aggregation and subselection operations: we are able to obtain related indices (closed, total, and superset indices) at negligible cost. Furthermore, we exploit an existing global optimization procedure within the TT framework for variable selection and model analysis tasks. We demonstrate our algorithms with two analytical engineering models and a parallel computing simulation data set

    Adaptive Multinomial Matrix Completion

    Full text link
    The task of estimating a matrix given a sample of observed entries is known as the \emph{matrix completion problem}. Most works on matrix completion have focused on recovering an unknown real-valued low-rank matrix from a random sample of its entries. Here, we investigate the case of highly quantized observations when the measurements can take only a small number of values. These quantized outputs are generated according to a probability distribution parametrized by the unknown matrix of interest. This model corresponds, for example, to ratings in recommender systems or labels in multi-class classification. We consider a general, non-uniform, sampling scheme and give theoretical guarantees on the performance of a constrained, nuclear norm penalized maximum likelihood estimator. One important advantage of this estimator is that it does not require knowledge of the rank or an upper bound on the nuclear norm of the unknown matrix and, thus, it is adaptive. We provide lower bounds showing that our estimator is minimax optimal. An efficient algorithm based on lifted coordinate gradient descent is proposed to compute the estimator. A limited Monte-Carlo experiment, using both simulated and real data is provided to support our claims

    Tensor train rank minimization with nonlocal self-similarity for tensor completion

    Full text link
    The tensor train (TT) rank has received increasing attention in tensor completion due to its ability to capture the global correlation of high-order tensors (order>3\textrm{order} >3). For third order visual data, direct TT rank minimization has not exploited the potential of TT rank for high-order tensors. The TT rank minimization accompany with \emph{ket augmentation}, which transforms a lower-order tensor (e.g., visual data) into a higher-order tensor, suffers from serious block-artifacts. To tackle this issue, we suggest the TT rank minimization with nonlocal self-similarity for tensor completion by simultaneously exploring the spatial, temporal/spectral, and nonlocal redundancy in visual data. More precisely, the TT rank minimization is performed on a formed higher-order tensor called group by stacking similar cubes, which naturally and fully takes advantage of the ability of TT rank for high-order tensors. Moreover, the perturbation analysis for the TT low-rankness of each group is established. We develop the alternating direction method of multipliers tailored for the specific structure to solve the proposed model. Extensive experiments demonstrate that the proposed method is superior to several existing state-of-the-art methods in terms of both qualitative and quantitative measures

    An algorithm for online tensor prediction

    Full text link
    We present a new method for online prediction and learning of tensors (NN-way arrays, N>2N >2) from sequential measurements. We focus on the specific case of 3-D tensors and exploit a recently developed framework of structured tensor decompositions proposed in [1]. In this framework it is possible to treat 3-D tensors as linear operators and appropriately generalize notions of rank and positive definiteness to tensors in a natural way. Using these notions we propose a generalization of the matrix exponentiated gradient descent algorithm [2] to a tensor exponentiated gradient descent algorithm using an extension of the notion of von-Neumann divergence to tensors. Then following a similar construction as in [3], we exploit this algorithm to propose an online algorithm for learning and prediction of tensors with provable regret guarantees. Simulations results are presented on semi-synthetic data sets of ratings evolving in time under local influence over a social network. The result indicate superior performance compared to other (online) convex tensor completion methods

    Tuning Free Rank-Sparse Bayesian Matrix and Tensor Completion with Global-Local Priors

    Full text link
    Matrix and tensor completion are frameworks for a wide range of problems, including collaborative filtering, missing data, and image reconstruction. Missing entries are estimated by leveraging an assumption that the matrix or tensor is low-rank. Most existing Bayesian techniques encourage rank-sparsity by modelling factorized matrices and tensors with Normal-Gamma priors. However, the Horseshoe prior and other "global-local" formulations provide tuning-parameter-free solutions which may better achieve simultaneous rank-sparsity and missing-value recovery. We find these global-local priors outperform commonly used alternatives in simulations and in a collaborative filtering task predicting board game ratings
    • …
    corecore