10 research outputs found

    Light Spanners

    Full text link
    A tt-spanner of a weighted undirected graph G=(V,E)G=(V,E), is a subgraph HH such that dH(u,v)tdG(u,v)d_H(u,v)\le t\cdot d_G(u,v) for all u,vVu,v\in V. The sparseness of the spanner can be measured by its size (the number of edges) and weight (the sum of all edge weights), both being important measures of the spanner's quality -- in this work we focus on the latter. Specifically, it is shown that for any parameters k1k\ge 1 and ϵ>0\epsilon>0, any weighted graph GG on nn vertices admits a (2k1)(1+ϵ)(2k-1)\cdot(1+\epsilon)-stretch spanner of weight at most w(MST(G))Oϵ(kn1/k/logk)w(MST(G))\cdot O_\epsilon(kn^{1/k}/\log k), where w(MST(G))w(MST(G)) is the weight of a minimum spanning tree of GG. Our result is obtained via a novel analysis of the classic greedy algorithm, and improves previous work by a factor of O(logk)O(\log k).Comment: 10 pages, 1 figure, to appear in ICALP 201

    Incubators vs Zombies: Fault-Tolerant, Short, Thin and Lanky Spanners for Doubling Metrics

    Full text link
    Recently Elkin and Solomon gave a construction of spanners for doubling metrics that has constant maximum degree, hop-diameter O(log n) and lightness O(log n) (i.e., weight O(log n)w(MST). This resolves a long standing conjecture proposed by Arya et al. in a seminal STOC 1995 paper. However, Elkin and Solomon's spanner construction is extremely complicated; we offer a simple alternative construction that is very intuitive and is based on the standard technique of net tree with cross edges. Indeed, our approach can be readily applied to our previous construction of k-fault tolerant spanners (ICALP 2012) to achieve k-fault tolerance, maximum degree O(k^2), hop-diameter O(log n) and lightness O(k^3 log n)

    New Doubling Spanners: Better and Simpler

    Get PDF
    published_or_final_versio

    Optimal Euclidean spanners: really short, thin and lanky

    Full text link
    In a seminal STOC'95 paper, titled "Euclidean spanners: short, thin and lanky", Arya et al. devised a construction of Euclidean (1+\eps)-spanners that achieves constant degree, diameter O(logn)O(\log n), and weight O(log2n)ω(MST)O(\log^2 n) \cdot \omega(MST), and has running time O(nlogn)O(n \cdot \log n). This construction applies to nn-point constant-dimensional Euclidean spaces. Moreover, Arya et al. conjectured that the weight bound can be improved by a logarithmic factor, without increasing the degree and the diameter of the spanner, and within the same running time. This conjecture of Arya et al. became a central open problem in the area of Euclidean spanners. In this paper we resolve the long-standing conjecture of Arya et al. in the affirmative. Specifically, we present a construction of spanners with the same stretch, degree, diameter, and running time, as in Arya et al.'s result, but with optimal weight O(logn)ω(MST)O(\log n) \cdot \omega(MST). Moreover, our result is more general in three ways. First, we demonstrate that the conjecture holds true not only in constant-dimensional Euclidean spaces, but also in doubling metrics. Second, we provide a general tradeoff between the three involved parameters, which is tight in the entire range. Third, we devise a transformation that decreases the lightness of spanners in general metrics, while keeping all their other parameters in check. Our main result is obtained as a corollary of this transformation.Comment: A technical report of this paper was available online from April 4, 201

    Balancing Degree, Diameter and Weight in Euclidean Spanners

    Full text link
    In this paper we devise a novel \emph{unified} construction of Euclidean spanners that trades between the maximum degree, diameter and weight gracefully. For a positive integer k, our construction provides a (1+eps)-spanner with maximum degree O(k), diameter O(log_k n + alpha(k)), weight O(k \cdot log_k n \cdot log n) \cdot w(MST(S)), and O(n) edges. Note that for k= n^{1/alpha(n)} this gives rise to diameter O(alpha(n)), weight O(n^{1/alpha(n)} \cdot log n \cdot alpha(n)) \cdot w(MST(S)) and maximum degree O(n^{1/alpha(n)}), which improves upon a classical result of Arya et al. \cite{ADMSS95}; in the corresponding result from \cite{ADMSS95} the spanner has the same number of edges and diameter, but its weight and degree may be arbitrarily large. Also, for k = O(1) this gives rise to maximum degree O(1), diameter O(log n) and weight O(log^2 n) \cdot w(MST(S)), which reproves another classical result of Arya et al. \cite{ADMSS95}. Our bound of O(log_k n + alpha(k)) on the diameter is optimal under the constraints that the maximum degree is O(k) and the number of edges is O(n). Our bound on the weight is optimal up to a factor of log n. Our construction also provides a similar tradeoff in the complementary range of parameters, i.e., when the weight should be smaller than log^2 n, but the diameter is allowed to grow beyond log n. For random point sets in the d-dimensional unit cube, we "shave" a factor of log n from the weight bound. Specifically, in this case our construction achieves maximum degree O(k), diameter O(log_k n + alpha(k)) and weight that is with high probability O(k \cdot log_k n) \cdot w(MST(S)). Finally, en route to these results we devise optimal constructions of 1-spanners for general tree metrics, which are of independent interest.Comment: 27 pages, 7 figures; a preliminary version of this paper appeared in ESA'1

    Shallow-Low-Light Trees, and Tight Lower Bounds for Euclidean Spanners

    No full text
    corecore