517 research outputs found

    A Detailed Analysis of Contemporary ARM and x86 Architectures

    Get PDF
    RISC vs. CISC wars raged in the 1980s when chip area and processor design complexity were the primary constraints and desktops and servers exclusively dominated the computing landscape. Today, energy and power are the primary design constraints and the computing landscape is significantly different: growth in tablets and smartphones running ARM (a RISC ISA) is surpassing that of desktops and laptops running x86 (a CISC ISA). Further, the traditionally low-power ARM ISA is entering the high-performance server market, while the traditionally high-performance x86 ISA is entering the mobile low-power device market. Thus, the question of whether ISA plays an intrinsic role in performance or energy efficiency is becoming important, and we seek to answer this question through a detailed measurement based study on real hardware running real applications. We analyze measurements on the ARM Cortex-A8 and Cortex-A9 and Intel Atom and Sandybridge i7 microprocessors over workloads spanning mobile, desktop, and server computing. Our methodical investigation demonstrates the role of ISA in modern microprocessors? performance and energy efficiency. We find that ARM and x86 processors are simply engineering design points optimized for different levels of performance, and there is nothing fundamentally more energy efficient in one ISA class or the other. The ISA being RISC or CISC seems irrelevant

    Racing to hardware-validated simulation

    Get PDF
    Processor simulators rely on detailed timing models of the processor pipeline to evaluate performance. The diversity in real-world processor designs mandates building flexible simulators that expose parts of the underlying model to the user in the form of configurable parameters. Consequently, the accuracy of modeling a real processor relies on both the accuracy of the pipeline model itself, and the accuracy of adjusting the configuration parameters according to the modeled processor. Unfortunately, processor vendors publicly disclose only a subset of their design decisions, raising the probability of introducing specification inaccuracies when modeling these processors. Inaccurately tuning model parameters deviates the simulated processor from the actual one. In the worst case, using improper parameters may lead to imbalanced pipeline models compromising the simulation output. Therefore, simulation models should be hardware-validated before using them for performance evaluation. As processors increase in complexity and diversity, validating a simulator model against real hardware becomes increasingly more challenging and time-consuming. In this work, we propose a methodology for validating simulation models against real hardware. We create a framework that relies on micro-benchmarks to collect performance statistics on real hardware, and machine learning-based algorithms to fine-tune the unknown parameters based on the accumulated statistics. We overhaul the Sniper simulator to support the ARM AArch64 instruction-set architecture (ISA), and introduce two new timing models for ARM-based in-order and out-of-order cores. Using our proposed simulator validation framework, we tune the in-order and out-of-order models to match the performance of a real-world implementation of the Cortex-A53 and Cortex-A72 cores with an average error of 7% and 15%, respectively, across a set of SPEC CPU2017 benchmarks

    Addressing Memory Bottlenecks for Emerging Applications

    Full text link
    There has been a recent emergence of applications from the domain of machine learning, data mining, numerical analysis and image processing. These applications are becoming the primary algorithms driving many important user-facing applications and becoming pervasive in our daily lives. Due to their increasing usage in both mobile and datacenter workloads, it is necessary to understand the software and hardware demands of these applications, and design techniques to match their growing needs. This dissertation studies the performance bottlenecks that arise when we try to improve the performance of these applications on current hardware systems. We observe that most of these applications are data-intensive, i.e., they operate on a large amount of data. Consequently, these applications put significant pressure on the memory. Interestingly, we notice that this pressure is not just limited to one memory structure. Instead, different applications stress different levels of the memory hierarchy. For example, training Deep Neural Networks (DNN), an emerging machine learning approach, is currently limited by the size of the GPU main memory. On the other spectrum, improving DNN inference on CPUs is bottlenecked by Physical Register File (PRF) bandwidth. Concretely, this dissertation tackles four such memory bottlenecks for these emerging applications across the memory hierarchy (off-chip memory, on-chip memory and physical register file), presenting hardware and software techniques to address these bottlenecks and improve the performance of the emerging applications. For on-chip memory, we present two scenarios where emerging applications perform at a sub-optimal performance. First, many applications have a large number of marginal bits that do not contribute to the application accuracy, wasting unnecessary space and transfer costs. We present ACME, an asymmetric compute-memory paradigm, that removes marginal bits from the memory hierarchy while performing the computation in full precision. Second, we tackle the contention in shared caches for these emerging applications that arise in datacenters where multiple applications can share the same cache capacity. We present ShapeShifter, a runtime system that continuously monitors the runtime environment, detects changes in the cache availability and dynamically recompiles the application on the fly to efficiently utilize the cache capacity. For physical register file, we observe that DNN inference on CPUs is primarily limited by the PRF bandwidth. Increasing the number of compute units in CPU requires increasing the read ports in the PRF. In this case, PRF quickly reaches a point where latency could no longer be met. To solve this problem, we present LEDL, locality extensions for deep learning on CPUs, that entails a rearchitected FMA and PRF design tailored for the heavy data reuse inherent in DNN inference. Finally, a significant challenge facing both the researchers and industry practitioners is that as the DNNs grow deeper and larger, the DNN training is limited by the size of the GPU main memory, restricting the size of the networks which GPUs can train. To tackle this challenge, we first identify the primary contributors to this heavy memory footprint, finding that the feature maps (intermediate layer outputs) are the heaviest contributors in training as opposed to the weights in inference. Then, we present Gist, a runtime system, that uses three efficient data encoding techniques to reduce the footprint of DNN training.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146016/1/anijain_1.pd

    Efficient design space exploration of embedded microprocessors

    Get PDF

    An evaluation of the TRIPS computer system

    Get PDF
    The TRIPS system employs a new instruction set architecture (ISA) called Explicit Data Graph Execution (EDGE) that renegotiates the boundary between hardware and software to expose and exploit concurrency. EDGE ISAs use a block-atomic execution model in which blocks are composed of dataflow instructions. The goal of the TRIPS design is to mine concurrency for high performance while tolerating emerging technology scaling challenges, such as increasing wire delays and power consumption. This paper evaluates how well TRIPS meets this goal through a detailed ISA and performance analysis. We compare performance, using cycles counts, to commercial processors. On SPEC CPU2000, the Intel Core 2 outperforms compiled TRIPS code in most cases, although TRIPS matches a Pentium 4. On simple benchmarks, compiled TRIPS code outperforms the Core 2 by 10% and hand-optimized TRIPS code outperforms it by factor of 3. Compared to conventional ISAs, the block-atomic model provides a larger instruction window, increases concurrency at a cost of more instructions executed, and replaces register and memory accesses with more efficient direct instruction-to-instruction communication. Our analysis suggests ISA, microarchitecture, and compiler enhancements for addressing weaknesses in TRIPS and indicates that EDGE architectures have the potential to exploit greater concurrency in future technologies

    Optimizing SIMD execution in HW/SW co-designed processors

    Get PDF
    SIMD accelerators are ubiquitous in microprocessors from different computing domains. Their high compute power and hardware simplicity improve overall performance in an energy efficient manner. Moreover, their replicated functional units and simple control mechanism make them amenable to scaling to higher vector lengths. However, code generation for these accelerators has been a challenge from the days of their inception. Compilers generate vector code conservatively to ensure correctness. As a result they lose significant vectorization opportunities and fail to extract maximum benefits out of SIMD accelerators. This thesis proposes to vectorize the program binary at runtime in a speculative manner, in addition to the compile time static vectorization. There are different environments that support runtime profiling and optimization support required for dynamic vectorization, one of most prominent ones being: 1) Dynamic Binary Translators and Optimizers (DBTO) and 2) Hardware/Software (HW/SW) Co-designed Processors. HW/SW co-designed environment provides several advantages over DBTOs like transparent incorporations of new hardware features, binary compatibility, etc. Therefore, we use HW/SW co-designed environment to assess the potential of speculative dynamic vectorization. Furthermore, we analyze vector code generation for wider vector units and find out that even though SIMD accelerators are amenable to scaling from the hardware point of view, vector code generation at higher vector length is even more challenging. The two major factors impeding vectorization for wider SIMD units are: 1) Reduced dynamic instruction stream coverage for vectorization and 2) Large number of permutation instructions. To solve the first problem we propose Variable Length Vectorization that iteratively vectorizes for multiple vector lengths to improve dynamic instruction stream coverage. Secondly, to reduce the number of permutation instructions we propose Selective Writing that selectively writes to different parts of a vector register and avoids permutations. Finally, we tackle the problem of leakage energy in SIMD accelerators. Since SIMD accelerators consume significant amount of real estate on the chip, they become the principle source of leakage if not utilized judiciously. Power gating is one of the most widely used techniques to reduce leakage energy of functional units. However, power gating has its own energy and performance overhead associated with it. We propose to selectively devectorize the vector code when higher SIMD lanes are used intermittently. This selective devectorization keeps the higher SIMD lanes idle and power gated for maximum duration. Therefore, resulting in overall leakage energy reduction.Postprint (published version

    The Performance Cost of Security

    Get PDF
    Historically, performance has been the most important feature when optimizing computer hardware. Modern processors are so highly optimized that every cycle of computation time matters. However, this practice of optimizing for performance at all costs has been called into question by new microarchitectural attacks, e.g. Meltdown and Spectre. Microarchitectural attacks exploit the effects of microarchitectural components or optimizations in order to leak data to an attacker. These attacks have caused processor manufacturers to introduce performance impacting mitigations in both software and silicon. To investigate the performance impact of the various mitigations, a test suite of forty-seven different tests was created. This suite was run on a series of virtual machines that tested both Ubuntu 16 and Ubuntu 18. These tests investigated the performance change across version updates and the performance impact of CPU core number vs. default microarchitectural mitigations. The testing proved that the performance impact of the microarchitectural mitigations is non-trivial, as the percent difference in performance can be as high as 200%
    corecore