5 research outputs found

    Waveform Analysis and Optimization for Radar Coincidence Imaging with Modeling Error

    Get PDF
    RCI is a novel superresolution staring imaging technique based on the idea of wavefront modulation and temporal-spatial stochastic radiation field. For RCI, the reference matrix should be known accurately, and the imaging performance depends on the incoherence property of the reference matrix. Unfortunately, the modeling error, which degrades the performance significantly, exists generally. In this paper, RCI using frequency-hopping waveforms (FH-RCI) is considered, and a FH code design method aiming to increase the robustness of RCI to modeling error is proposed. First, we derive the upper bound of imaging error for RCI with modeling error and conclude that the condition number of the reference matrix determines the imaging performance. Then the object function for waveform design which minimizes the condition number of the reference matrix is achieved, and the quantum simulated annealing (QSA) is employed to optimize the FH code. Numerical simulations show that the optimized FH code could decrease the condition number of the reference matrix and improve the imaging performance of RCI with modeling error

    Low-Complexity Design of Frequency-Hopping Codes for MIMO Radar for Arbitrary Doppler

    No full text
    <p/> <p>There has been a recent interest in the application of Multiple-Input Multiple-Output (MIMO) communication concepts to radars. Recent literature discusses optimization of orthogonal frequency-hopping waveforms for MIMO radars, based on a newly formulated MIMO ambiguity function. Existing literature however makes the assumption of small target Doppler. We first extend the scope of this ambiguity function to large values of target Doppler. We introduce the concept of hit-matrix in the MIMO context, which is based on the hit-array, which has been used extensively in the context of frequency-hopping waveforms for phased-array radars. We then propose new methods to obtain near optimal waveforms in both the large and small Doppler scenarios. Under the large Doppler scenario, we propose the use of a cost function based on the hit-matrix which offers a significantly lower computational complexity as compared to an ambiguity based cost function, with no loss in code performance. In the small Doppler scenario, we present an algorithm for directly designing the waveform from certain properties of the ambiguity function in conjunction with the hit-matrix. Finally, we introduce "weighted optimization" wherein we mask the cost function used in the heuristic search algorithm to reflect the properties of the required ambiguity function.</p
    corecore