1 research outputs found

    Enabling human physiological sensing by leveraging intelligent head-worn wearable systems

    Get PDF
    This thesis explores the challenges of enabling human physiological sensing by leveraging head-worn wearable computer systems. In particular, we want to answer a fundamental question, i.e., could we leverage head-worn wearables to enable accurate and socially-acceptable solutions to improve human healthcare and prevent life-threatening conditions in our daily lives? To that end, we will study the techniques that utilise the unique advantages of wearable computers to (1) facilitate new sensing capabilities to capture various biosignals from the brain, the eyes, facial muscles, sweat glands, and blood vessels, (2) address motion artefacts and environmental noise in real-time with signal processing algorithms and hardware design techniques, and (3) enable long-term, high-fidelity biosignal monitoring with efficient on-chip intelligence and pattern-driven compressive sensing algorithms. We first demonstrate the ability to capture the activities of the user's brain, eyes, facial muscles, and sweat glands by proposing WAKE, a novel behind-the-ear biosignal sensing wearable. By studying the human anatomy in the ear area, we propose a wearable design to capture brain waves (EEG), eye movements (EOG), facial muscle contractions (EMG), and sweat gland activities (EDA) with a minimal number of sensors. Furthermore, we introduce a Three-fold Cascaded Amplifying (3CA) technique and signal processing algorithms to tame the motion artefacts and environmental noises for capturing high-fidelity signals in real time. We devise a machine-learning model based on the captured signals to detect microsleep with a high temporal resolution. Second, we will discuss our work on developing an efficient Pattern-dRiven Compressive Sensing framework (PROS) to enable long-term biosignal monitoring on low-power wearables. The system introduces tiny on-chip pattern recognition primitives (TinyPR) and a novel pattern-driven compressive sensing technique (PDCS) that exploits the sparsity of biosignals. They provide the ability to capture high-fidelity biosignals with an ultra-low power footprint. This development will unlock long-term healthcare applications on wearable computers, such as epileptic seizure monitoring, microsleep detection, etc. These applications were previously impractical on energy and resource-constrained wearable computers due to the limited battery lifetime, slow response rate, and inadequate biosignal quality. Finally, we will further explore the possibility of capturing the activities of a blood vessel (i.e., superficial temporal artery) lying deep inside the user's ear using an ear-worn wearable computer. The captured optical pulse signals (PPG) are used to develop a frequent and comfortable blood pressure monitoring system called eBP. In contrast to existing devices, eBP introduces a novel in-ear wearable system design and algorithms to eliminate the need to block the blood flow inside the ear, alleviating the user's discomfort
    corecore