4 research outputs found

    Multi-Service Radio Resource Management for 5G Networks

    Get PDF

    Optimal Resource Allocation for Multi-user OFDMA-URLLC MEC Systems

    Full text link
    In this paper, we study resource allocation algorithm design for multi-user orthogonal frequency division multiple access (OFDMA) ultra-reliable low latency communication (URLLC) in mobile edge computing (MEC) systems. To meet the stringent end-to-end delay and reliability requirements of URLLC MEC systems, we propose joint uplink-downlink resource allocation and finite blocklength transmission. Furthermore, we employ a partial time overlap between the uplink and downlink frames to minimize the end-to-end delay, which introduces a new time causality constraint. The proposed resource allocation algorithm is formulated as an optimization problem for minimization of the total weighted power consumption of the network under a constraint on the number of URLLC user bits computed within the maximum allowable computation time, i.e., the end-to-end delay of a computation task. Despite the non-convexity of the formulated optimization problem, we develop a globally optimal solution using a branch-and-bound approach based on discrete monotonic optimization theory. The branch-and-bound algorithm minimizes an upper bound on the total power consumption until convergence to the globally optimal value. Furthermore, to strike a balance between computational complexity and performance, we propose two efficient suboptimal algorithms based on successive convex approximation and second-order cone techniques. Our simulation results reveal that the proposed resource allocation algorithm design facilitates URLLC in MEC systems, and yields significant power savings compared to three baseline schemes. Moreover, our simulation results show that the proposed suboptimal algorithms offer different trade-offs between performance and complexity and attain a close-to-optimal performance at comparatively low complexity.Comment: 32 pages, 9 figures, submitted for an IEEE journal. arXiv admin note: substantial text overlap with arXiv:2005.0470

    Low-Complexity Centralized Multi-Cell Radio Resource Allocation for 5G URLLC

    No full text

    Open Cell-less Network Architecture and Radio Resource Management for Future Wireless Communication Systems

    Get PDF
    In recent times, the immense growth of wireless traffic data generated from massive mobile devices, services, and applications results in an ever-increasing demand for huge bandwidth and very low latency, with the future networks going in the direction of achieving extreme system capacity and ultra reliable low latency communication (URLLC). Several consortia comprising major international mobile operators, infrastructure manufacturers, and academic institutions are working to develop and evolve the current generation of wireless communication systems, i.e., fifth generation (5G) towards a sixth generation (6G) to support improved data rates, reliability, and latency. Existing 5G networks are facing the latency challenges in a high-density and high-load scenario for an URLLC network which may coexist with enhanced mobile broadband (eMBB) services. At the same time, the evolution of mobile communications faces the important challenge of increased network power consumption. Thus, energy efficient solutions are expected to be deployed in the network in order to reduce power consumption while fulfilling user demands for various user densities. Moreover, the network architecture should be dynamic according to the new use cases and applications. Also, there are network migration challenges for the multi-architecture coexistence networks. Recently, the open radio access network (O-RAN) alliance was formed to evolve RANs with its core principles being intelligence and openness. It aims to drive the mobile industry towards an ecosystem of innovative, multi-vendor, interoperable, and autonomous RAN, with reduced cost, improved performance and greater agility. However, this is not standardized yet and still lacks interoperability. On the other hand, the cell-less radio access network (RAN) was introduced to boost the system performance required for the new services. However, the concept of cell-less RAN is still under consideration from the deployment point of view with the legacy cellular networks. The virtualization, centralization and cooperative communication which enables the cell-less RAN can further benefit from O-RAN based architecture. This thesis addresses the research challenges facing 5G and beyond networks towards 6G networks in regard to new architectures, spectral efficiency, latency, and energy efficiency. Different system models are stated according to the problem and several solution schemes are proposed and developed to overcome these challenges. This thesis contributes as follows. Firstly, the cell-less technology is proposed to be implemented through an Open RAN architecture, which could be supervised with the near real-time RAN intelligent controller (near-RT-RIC). The cooperation is enabled for intelligent and smart resource allocation for the entire RAN. Secondly, an efficient radio resource optimization mechanism is proposed for the cell-less architecture to improve the system capacity of the future 6G networks. Thirdly, an optimized and novel resource scheduling scheme is presented that reduces latency for the URLLC users in an efficient resource utilization manner to support scenarios with high user density. At the same time, this radio resource management (RRM) scheme, while minimizing the latency, also overcomes another important challenge of eMBB users, namely the throughput of those who coexist in such a highly loaded scenario with URLLC users. Fourthly, a novel energy-efficiency enhancement scheme, i.e., (3 × E) is designed to increase the transmission rate per energy unit, with stable performance within the cell-less RAN architecture. Our proposed (3 × E) scheme activates two-step sleep modes (i.e., certain phase and conditional phase) through the intelligent interference management for temporarily switching access points (APs) to sleep, optimizing the network energy efficiency (EE) in highly loaded scenarios, as well as in scenarios with lower load. Finally, a multi-architecture coexistence (MACO) network model is proposed to enable inter-connection of different architectures through coexistence and cooperation logical switches in order to enable smooth deployment of a cell-less architecture within the legacy networks. The research presented in this thesis therefore contributes new knowledge in the cellless RAN architecture domain of the future generation wireless networks and makes important contributions to this field by investigating different system models and proposing solutions to significant issues.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidenta: Matilde Pilar Sánchez Fernández.- Secretario: Alberto Álvarez Polegre.- Vocal: José Francisco Monserrat del Rí
    corecore