4,379,077 research outputs found

    Low-frequency radio navigation system

    Get PDF
    A method of continuous wave navigation using four transmitters operating at sufficiently low frequencies to assure essentially pure groundwave operation is described. The transmitters are keyed to transmit constant bursts (1/4 sec) in a time-multiplexed pattern with phase modulation of at least one transmitter for identification of the transmitters and with the ability to identify the absolute phase of the modulated transmitter and the ability to modulate low rate data for transmission. The transmitters are optimally positioned to provide groundwave coverage over a service region of about 50 by 50 km for the frequencies selected in the range of 200 to 500 kHz, but their locations are not critical because of the beneficial effect of overdetermination of position of a receiver made possible by the fourth transmitter. Four frequencies are used, at least two of which are selected to provide optimal resolution. All transmitters are synchronized to an average phase as received by a monitor receiver

    Low-frequency triangular wave generator

    Get PDF
    Triangular waveform is generated by a combination of two integrated circuit operational amplifiers, one to produce square wave and other to integrate square wave and generate triangular wave

    The Planck Low Frequency Instrument

    Get PDF
    The Low Frequency Instrument (LFI) of the "Planck Surveyor" ESA mission will perform high-resolution imaging of the Cosmic Microwave Background anisotropies at four frequencies in the 30-100 GHz range. We review the LFI main scientific objectives, the current status of the instrument design and the on-going effort to develop software simulations of the LFI observations. In particular we discuss the design status of the PLANCK telescope, which is critical for reaching adequate effective angular resolution.Comment: 10 pages, Latex (use epsfig.sty); 4 Postscript figures; Astrophys. Lett & Comm, in press. Proc. of the Conference: "The Cosmic Microwave Background and the Planck Mission", Santander, Spain, 22-25 June 199

    High-frequency Light Reflector via Low-frequency Light Control

    Get PDF
    We show that the momentum of light can be reversed via the atomic coherence created by another light with one or two orders of magnitude lower frequency. Both the backward retrieval of single photons from a timed Dicke state and the reflection of continuous waves by high-order photonic band gaps are analysed. The required control field strength scales linearly with the nonlinearity order, which is explained by the dynamics of superradiance lattices. Experiments are proposed with 85^{85}Rb atoms and Be2+^{2+} ions. This holds promise for light-controllable X-ray reflectors.Comment: 5 pages, 5 figure

    Extremely low-frequency spectroscopy in low-field nuclear magnetic resonance

    No full text
    We demonstrate a new phenomenon in nuclear magnetic resonance spectroscopy, in which nuclear spin transitions are induced by radio frequency irradiation at extremely low frequencies (of the order of a few Hz). Slow Rabi oscillations are observed between spin states of different exchange symmetry. These “forbidden” transitions are rendered weakly allowed by differential electronic shielding effects on the radio frequency field. We generate coherence between the singlet and triplet states of 15N-labeled nitrous oxide in solution, and estimate the scalar coupling between the two 15N nuclei with a precision of a few mHz

    Low phase-noise digital frequency divider

    Get PDF
    Digitally generated countdown pulse at submultiple frequency is applied to one electrode of FET gate to establish threshold state; gate cannot function until desired portion of reference half-wave pulse which is to be passed appears on second electrode

    Low-frequency line temperatures of the CMB

    Full text link
    Based on SU(2) Yang-Mills thermodynamics we interprete Aracde2's and the results of earlier radio-surveys on low-frequency CMB line temperatures as a phase-boundary effect. We explain the excess at low frequencies by evanescent, nonthermal photon fields of the CMB whose intensity is nulled by that of Planck distributed calibrator photons. The CMB baseline temperature thus is identified with the critical temperature of the deconfining-preconfining transition.Comment: v2: 9 pages, 1 figure, extended discussion of why prsent photon mass bounds are not in contradiction to a low-temperature, low-frequency Meissner mass responsible for UEGE, matches journal versio
    corecore