7 research outputs found

    High-order accurate well-balanced energy stable adaptive moving mesh finite difference schemes for the shallow water equations with non-flat bottom topography

    Full text link
    This paper proposes high-order accurate well-balanced (WB) energy stable (ES) adaptive moving mesh finite difference schemes for the shallow water equations (SWEs) with non-flat bottom topography. To enable the construction of the ES schemes on moving meshes, a reformulation of the SWEs is introduced, with the bottom topography as an additional conservative variable that evolves in time. The corresponding energy inequality is derived based on a modified energy function, then the reformulated SWEs and energy inequality are transformed into curvilinear coordinates. A two-point energy conservative (EC) flux is constructed, and high-order EC schemes based on such a flux are proved to be WB that they preserve the lake at rest. Then high-order ES schemes are derived by adding suitable dissipation terms to the EC schemes, which are newly designed to maintain the WB and ES properties simultaneously. The adaptive moving mesh strategy is performed by iteratively solving the Euler-Lagrangian equations of a mesh adaptation functional. The fully-discrete schemes are obtained by using the explicit strong-stability preserving third-order Runge-Kutta method. Several numerical tests are conducted to validate the accuracy, WB and ES properties, shock-capturing ability, and high efficiency of the schemes.Comment: 40 pages, 16 figure

    High-order accurate well-balanced energy stable finite difference schemes for multi-layer shallow water equations on fixed and adaptive moving meshes

    Full text link
    This paper develops high-order well-balanced (WB) energy stable (ES) finite difference schemes for multi-layer (the number of layers M2M\geqslant 2) shallow water equations (SWEs) on both fixed and adaptive moving meshes, extending our previous works [20,51]. To obtain an energy inequality, the convexity of an energy function for an arbitrary MM is proved by finding recurrence relations of the leading principal minors or the quadratic forms of the Hessian matrix of the energy function with respect to the conservative variables, which is more involved than the single-layer case due to the coupling between the layers in the energy function. An important ingredient in developing high-order semi-discrete ES schemes is the construction of a two-point energy conservative (EC) numerical flux. In pursuit of the WB property, a sufficient condition for such EC fluxes is given with compatible discretizations of the source terms similar to the single-layer case. It can be decoupled into MM identities individually for each layer, making it convenient to construct a two-point EC flux for the multi-layer system. To suppress possible oscillations near discontinuities, WENO-based dissipation terms are added to the high-order WB EC fluxes, which gives semi-discrete high-order WB ES schemes. Fully-discrete schemes are obtained by employing high-order explicit SSP-RK methods and proved to preserve the lake at rest. The schemes are further extended to moving meshes based on a modified energy function for a reformulated system, relying on the techniques proposed in [51]. Numerical experiments are conducted for some two- and three-layer cases to validate the high-order accuracy, WB and ES properties, and high efficiency of the schemes, with a suitable amount of dissipation chosen by estimating the maximal wave speed due to the lack of an analytical expression for the eigenstructure of the multi-layer system.Comment: 54 pages, 19 figure

    An Entropy Stable Nodal Discontinuous Galerkin Method for the resistive MHD Equations. Part II: Subcell Finite Volume Shock Capturing

    Get PDF
    The second paper of this series presents two robust entropy stable shock-capturing methods for discontinuous Galerkin spectral element(DGSEM)discretizations of the compressible magneto-hydrodynamics (MHD) equations. Specifically, we use the resistive GLM-MHD equations, which include a divergence cleaning mechanism that is based on a generalized Lagrange multiplier (GLM). For the continuous entropy analysis to hold, and due to the divergence-free constraint on the magnetic field, the GLM-MHD system requires the use of non-conservative terms, which need special treatment. Hennemann et al. ["A provably entropy stable subcell shock capturing approach for high order split form DG for the compressible Euler equations". JCP, 2020] recently presented an entropy stable shock-capturing strategy for DGSEM discretizations of the Euler equations that blends the DGSEM scheme with a subcell first-order finite volume (FV) method. Our first contribution is the extension of the method of Hennemann et al. to systems with non-conservative terms, such as the GLM-MHD equations. In our approach, the advective and non-conservative terms of the equations are discretized with a hybrid FV/DGSEM scheme, whereas the visco-resistive terms are discretized only with the high-order DGSEM method. We prove that the extended method is entropy stable on three-dimensional unstructured curvilinear meshes. Our second contribution is the derivation and analysis of a second entropy stable shock-capturing method that provides enhanced resolution by using a subcell reconstruction procedure that is carefully built to ensure entropy stability. We provide a numerical verification of the properties of the hybrid FV/DGSEM schemes on curvilinear meshes and show their robustness and accuracy with common benchmark cases, such as the Orszag-Tang vortex and the GEM (Geospace Environmental Modeling) reconnection challenge. Finally, we simulate a space physics application: the interaction of Jupiter's magnetic field with the plasma torus generated by the moon Io
    corecore