2,759 research outputs found

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Exploration and Design of Power-Efficient Networked Many-Core Systems

    Get PDF
    Multiprocessing is a promising solution to meet the requirements of near future applications. To get full benefit from parallel processing, a manycore system needs efficient, on-chip communication architecture. Networkon- Chip (NoC) is a general purpose communication concept that offers highthroughput, reduced power consumption, and keeps complexity in check by a regular composition of basic building blocks. This thesis presents power efficient communication approaches for networked many-core systems. We address a range of issues being important for designing power-efficient manycore systems at two different levels: the network-level and the router-level. From the network-level point of view, exploiting state-of-the-art concepts such as Globally Asynchronous Locally Synchronous (GALS), Voltage/ Frequency Island (VFI), and 3D Networks-on-Chip approaches may be a solution to the excessive power consumption demanded by today’s and future many-core systems. To this end, a low-cost 3D NoC architecture, based on high-speed GALS-based vertical channels, is proposed to mitigate high peak temperatures, power densities, and area footprints of vertical interconnects in 3D ICs. To further exploit the beneficial feature of a negligible inter-layer distance of 3D ICs, we propose a novel hybridization scheme for inter-layer communication. In addition, an efficient adaptive routing algorithm is presented which enables congestion-aware and reliable communication for the hybridized NoC architecture. An integrated monitoring and management platform on top of this architecture is also developed in order to implement more scalable power optimization techniques. From the router-level perspective, four design styles for implementing power-efficient reconfigurable interfaces in VFI-based NoC systems are proposed. To enhance the utilization of virtual channel buffers and to manage their power consumption, a partial virtual channel sharing method for NoC routers is devised and implemented. Extensive experiments with synthetic and real benchmarks show significant power savings and mitigated hotspots with similar performance compared to latest NoC architectures. The thesis concludes that careful codesigned elements from different network levels enable considerable power savings for many-core systems.Siirretty Doriast

    Towards Terabit Carrier Ethernet and Energy Efficient Optical Transport Networks

    Get PDF

    Global Congestion and Fault Aware Wireless Interconnection Framework for Multicore Systems

    Get PDF
    Multicore processors are getting more common in the implementation of all type of computing demands, starting from personal computers to the large server farms for high computational demanding applications. The network-on-chip provides a better alternative to the traditional bus based communication infrastructure for this multicore system. Conventional wire-based NoC interconnect faces constraints due to their long multi-hop latency and high power consumption. Furthermore high traffic generating applications sometimes creates congestion in such system further degrading the systems performance. In this thesis work, a novel two-state congestion aware wireless interconnection framework for network chip is presented. This WiNoC system was designed to able to dynamically redirect traffic to avoid congestion based on network condition information shared among all the core tiles in the system. Hence a novel routing scheme and a two-state MAC protocol is proposed based on a proposed two layer hybrid mesh-based NoC architecture. The underlying mesh network is connected via wired-based interconnect and on top of that a shared wireless interconnect framework is added for single-hop communication. The routing scheme is non-deterministic in nature and utilizes the principles from existing dynamic routing algorithms. The MAC protocol for the wireless interface works in two modes. The first is data mode where a token-based protocol is utilized to transfer core data. And the second mode is the control mode where a broadcast-based communication protocol is used to share the network congestion information. The work details the switching methodology between these two modes and also explain, how the routing scheme utilizes the congestion information (gathered during the control mode) to route data packets during normal operation mode. The proposed work was modeled in a cycle accurate network simulator and its performance were evaluated against traditional NoC and WiNoC designs
    • …
    corecore