24 research outputs found

    Gr\"obner Bases and Nullstellens\"atze for Graph-Coloring Ideals

    Full text link
    We revisit a well-known family of polynomial ideals encoding the problem of graph-kk-colorability. Our paper describes how the inherent combinatorial structure of the ideals implies several interesting algebraic properties. Specifically, we provide lower bounds on the difficulty of computing Gr\"obner bases and Nullstellensatz certificates for the coloring ideals of general graphs. For chordal graphs, however, we explicitly describe a Gr\"obner basis for the coloring ideal, and provide a polynomial-time algorithm.Comment: 16 page

    Computation with Polynomial Equations and Inequalities arising in Combinatorial Optimization

    Full text link
    The purpose of this note is to survey a methodology to solve systems of polynomial equations and inequalities. The techniques we discuss use the algebra of multivariate polynomials with coefficients over a field to create large-scale linear algebra or semidefinite programming relaxations of many kinds of feasibility or optimization questions. We are particularly interested in problems arising in combinatorial optimization.Comment: 28 pages, survey pape

    Graphs with large girth and chromatic number are hard for Nullstellensatz

    Full text link
    We study the computational efficiency of approaches, based on Hilbert's Nullstellensatz, which use systems of linear equations for detecting non-colorability of graphs having large girth and chromatic number. We show that for every non-kk-colorable graph with nn vertices and girth g>4kg>4k, the algorithm is required to solve systems of size at least nΩ(g)n^{\Omega(g)} in order to detect its non-kk-colorability

    Graph Colouring is Hard for Algorithms Based on Hilbert's Nullstellensatz and Gr\"{o}bner Bases

    Full text link
    We consider the graph kk-colouring problem encoded as a set of polynomial equations in the standard way over 0/10/1-valued variables. We prove that there are bounded-degree graphs that do not have legal kk-colourings but for which the polynomial calculus proof system defined in [Clegg et al '96, Alekhnovich et al '02] requires linear degree, and hence exponential size, to establish this fact. This implies a linear degree lower bound for any algorithms based on Gr\"{o}bner bases solving graph kk-colouring using this encoding. The same bound applies also for the algorithm studied in a sequence of papers [De Loera et al '08,'09,'11,'15] based on Hilbert's Nullstellensatz proofs for a slightly different encoding, thus resolving an open problem mentioned in [De Loera et al '08,'09,'11] and [Li '16]. We obtain our results by combining the polynomial calculus degree lower bound for functional pigeonhole principle (FPHP) formulas over bounded-degree bipartite graphs in [Mik\v{s}a and Nordstr\"{o}m '15] with a reduction from FPHP to kk-colouring derivable by polynomial calculus in constant degree

    Convex Algebraic Geometry Approaches to Graph Coloring and Stable Set Problems

    Get PDF
    The objective of a combinatorial optimization problem is to find an element that maximizes a given function defined over a large and possibly high-dimensional finite set. It is often the case that the set is so large that solving the problem by inspecting all the elements is intractable. One approach to circumvent this issue is by exploiting the combinatorial structure of the set (and possibly the function) and reformulate the problem into a familiar set-up where known techniques can be used to attack the problem. Some common solution methods for combinatorial optimization problems involve formulations that make use of Systems of Linear Equations, Linear Programs (LPs), Semidefinite Programs (SDPs), and more generally, Conic and Semi-algebraic Programs. Although, generality often implies flexibility and power in the formulations, in practice, an increase in sophistication usually implies a higher running time of the algorithms used to solve the problem. Despite this, for some combinatorial problems, it is hard to rule out the applicability of one formulation over the other. One example of this is the Stable Set Problem. A celebrated result of Lovász's states that it is possible to solve (to arbitrary accuracy) in polynomial time the Stable Set Problem for perfect graphs. This is achieved by showing that the Stable Set Polytope of a perfect graph is the projection of a slice of a Positive Semidefinite Cone of not too large dimension. Thus, the Stable Set Problem can be solved with the use of a reasonably sized SDP. However, it is unknown whether one can solve the same problem using a reasonably sized LP. In fact, even for simple classes of perfect graphs, such as Bipartite Graphs, we do not know the right order of magnitude of the minimum size LP formulation of the problem. Another example is Graph Coloring. In 2008 Jesús De Loera, Jon Lee, Susan Margulies and Peter Malkin proposed a technique to solve several combinatorial problems, including Graph Coloring Problems, using Systems of Linear Equations. These systems are obtained by reformulating the decision version of the combinatorial problem with a system of polynomial equations. By a theorem of Hilbert, known as Hilbert's Nullstellensatz, the infeasibility of this polynomial system can be determined by solving a (usually large) system of linear equations. The size of this system is an exponential function of a parameter dd that we call the degree of the Nullstellensatz Certificate. Computational experiments of De Loera et al. showed that the Nullstellensatz method had potential applications for detecting non-33-colorability of graphs. Even for known hard instances of graph coloring with up to two thousand vertices and tens of thousands of edges the method was useful. Moreover, all of these graphs had very small Nullstellensatz Certificates. Although, the existence of hard non-33-colorable graph examples for the Nullstellensatz approach are known, determining what combinatorial properties makes the Nullstellensatz approach effective (or ineffective) is wide open. The objective of this thesis is to amplify our understanding on the power and limitations of these methods, all of these falling into the umbrella of Convex Algebraic Geometry approaches, for combinatorial problems. We do this by studying the behavior of these approaches for Graph Coloring and Stable Set Problems. First, we study the Nullstellensatz approach for graphs having large girth and chromatic number. We show that that every non-kk-colorable graph with girth gg needs a Nullstellensatz Certificate of degree Ω(g)\Omega(g) to detect its non-kk-colorability. It is our general belief that the power of the Nullstellensatz method is tied with the interplay between local and global features of the encoding polynomial system. If a graph is locally kk-colorable, but globally non-kk-colorable, we suspect that it will be hard for the Nullstellensatz to detect the non-kk-colorability of the graph. Our results point towards that direction. Finally, we study the Stable Set Problem for dd-regular Bipartite Graphs having no C4C_4, i.e., having no cycle of length four. In 2017 Manuel Aprile \textit{et al.} showed that the Stable Set Polytope of the incidence graph Gd1G_{d-1} of a Finite Projective Plane of order d1d-1 (hence, dd-regular) does not admit an LP formulation with fewer than ln(d)dE(Gd1)\frac{\ln(d)}{d}|E(G_{d-1})| facets. Although, we did not manage to improve this lower bound for general dd-regular graphs, we show that any 44-regular bipartite graph GG having no C4C_4 does not admit an LP formulation with fewer than E(G)|E(G)| facets. In addition, we obtain computational results showing the E(G)|E(G)| lower bound also holds for the Finite Projective Plane G4G_4, a 55-regular graph. It is our belief that Aprile et al. bounds can be improved considerably

    On the structure of Gröbner bases for graph coloring ideals

    Get PDF
    In this thesis, we look at a well-known connection between the graph coloring problem and the solvability of certain systems of polynomial equations. In particular, we examine the connection between the structure of a graph and the structure of the Gröbner bases of the graph’s coloring ideal. From a theoretical viewpoint, we show some properties of such Gröbner bases, and we develop a polynomial-time algorithm to compute a Gröbner basis for chordal graphs. From the experimental side, we state results about specific Gröbner bases and about the Gröbner fan for a variety of graph families. Moreover, some heuristics and techniques are explored that reduce the computational complexity. The relevance of heuristic methods is justified by a section about expected intrinsic hardness of Gröbner basis computations

    Fourier sum of squares certificates

    Full text link
    The non-negativity of a function on a finite abelian group can be certified by its Fourier sum of squares (FSOS). In this paper, we propose a method of certifying the non-negativity of an integer-valued function by an FSOS certificate, which is defined to be an FSOS with a small error. We prove the existence of exponentially sparse polynomial and rational FSOS certificates and we provide two methods to validate them. As a consequence of the aforementioned existence theorems, we propose a semidefinite programming (SDP)-based algorithm to efficiently compute a sparse FSOS certificate. For applications, we consider certificate problems for maximum satisfiability (MAX-SAT) and maximum k-colorable subgraph (MkCS) and demonstrate our theoretical results and algorithm by numerical experiments
    corecore