3 research outputs found

    FPGA Prototyping of A High Data Rate LTE Uplink Baseband Receiver

    Get PDF
    The Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) standard is becoming the appropriate choice to pave the way for the next generation wireless and cellular standards. While the popular OFDM technique has been adopted and implemented in previous standards and also in the LTE downlink, it suffers from high peak-to-average-power ratio (PAPR). High PAPR requires more sophisticated power amplifiers (PAs) in the handsets and would result in lower efficiency PAs. In order to combat such effects, the LTE uplink choice of transmission is the novel Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme which has lower PAPR due to its inherent signal structure. While reducing the PAPR, the SC-FDMA requires a more complicated detector structure in the base station for multi-antenna and multi-user scenarios. Since the multi-antenna and multi-user scenarios are critical parts of the LTE standard to deliver high performance and data rate, it is important to design novel architectures to ensure high reliability and data rate in the receiver. In this paper, we propose a flexible architecture of a high data rate LTE uplink receiver with multiple receive antennas and implemented a single FPGA prototype of this architecture. The architecture is verified on the WARPLab (a software defined radio platform based on Rice Wireless Open-access Research Platform) and tested in the real over-the-air indoor channel.NokiaNokia Siemens Networks (NSN)XilinxAzimuth SystemsNational Science Foundatio

    Frequency-Domain Turbo Equalization for MIMO Underwater Acoustic Communications

    Get PDF
    This paper investigates a low-complexity frequency-domain turbo equalization (FDTE) based on linear minimum mean square error (LMMSE) criterion for single-carrier (SC) multiple-input multiple-output (MIMO) underwater acoustic communications (UAC). The receiver incorporates both the equalizer and the decoder which exchange the extrinsic information on the coded bits for each other to implement the iterative detection. The channel impulse responses (CIRs) required in the equalization are estimated in the frequency domain (FD) by inserting the well-designed pilot blocks which are frequency-orthogonal Chu sequences. The proposed SC-MIMO-FDTE architecture is applied to the fixed-to-fixed underwater data gathered during SPACE08 ocean experiments in October 2008, where multiple transducers and hydrophones are deployed in communication ranges of 200m and 1000m, and the channel bandwidth is 9.765625 kHz. The phase shift keying (PSK) signals are transmitted from multiple transducers in various block sizes. The proposed transceiver has been demonstrated to improve the bit-error-rate (BER) performance significantly by processing the QPSK data blocks with block length of 1024 in 200m and 1000m ranges. The average BERs obtained by turbo detection with 3 iterations can achieve approximately 1.4 × 10-4 for the 200m system and 4.4 × 10-5 for the 1000m system

    Robust frequency-domain turbo equalization for multiple-input multiple-output (MIMO) wireless communications

    Get PDF
    This dissertation investigates single carrier frequency-domain equalization (SC-FDE) with multiple-input multiple-output (MIMO) channels for radio frequency (RF) and underwater acoustic (UWA) wireless communications. It consists of five papers, selected from a total of 13 publications. Each paper focuses on a specific technical challenge of the SC-FDE MIMO system. The first paper proposes an improved frequency-domain channel estimation method based on interpolation to track fast time-varying fading channels using a small amount of training symbols in a large data block. The second paper addresses the carrier frequency offset (CFO) problem using a new group-wise phase estimation and compensation algorithm to combat phase distortion caused by CFOs, rather than to explicitly estimate the CFOs. The third paper incorporates layered frequency-domain equalization with the phase correction algorithm to combat the fast phase rotation in coherent communications. In the fourth paper, the frequency-domain equalization combined with the turbo principle and soft successive interference cancelation (SSIC) is proposed to further improve the bit error rate (BER) performance of UWA communications. In the fifth paper, a bandwidth-efficient SC-FDE scheme incorporating decision-directed channel estimation is proposed for UWA MIMO communication systems. The proposed algorithms are tested by extensive computer simulations and real ocean experiment data. The results demonstrate significant performance improvements in four aspects: improved channel tracking, reduced BER, reduced computational complexity, and enhanced data efficiency --Abstract, page iv
    corecore