19 research outputs found

    Low Bit-Rate Speech Coding with VQ-VAE and a WaveNet Decoder

    Full text link
    In order to efficiently transmit and store speech signals, speech codecs create a minimally redundant representation of the input signal which is then decoded at the receiver with the best possible perceptual quality. In this work we demonstrate that a neural network architecture based on VQ-VAE with a WaveNet decoder can be used to perform very low bit-rate speech coding with high reconstruction quality. A prosody-transparent and speaker-independent model trained on the LibriSpeech corpus coding audio at 1.6 kbps exhibits perceptual quality which is around halfway between the MELP codec at 2.4 kbps and AMR-WB codec at 23.05 kbps. In addition, when training on high-quality recorded speech with the test speaker included in the training set, a model coding speech at 1.6 kbps produces output of similar perceptual quality to that generated by AMR-WB at 23.05 kbps.Comment: ICASSP 201

    MFCC-GAN Codec: A New AI-based Audio Coding

    Full text link
    In this paper, we proposed AI-based audio coding using MFCC features in an adversarial setting. We combined a conventional encoder with an adversarial learning decoder to better reconstruct the original waveform. Since GAN gives implicit density estimation, therefore, such models are less prone to overfitting. We compared our work with five well-known codecs namely AAC, AC3, Opus, Vorbis, and Speex, performing on bitrates from 2kbps to 128kbps. MFCCGAN_36k achieved the state-of-the-art result in terms of SNR despite a lower bitrate in comparison to AC3_128k, AAC_112k, Vorbis_48k, Opus_48k, and Speex_48K. On the other hand, MFCCGAN_13k also achieved high SNR=27 which is equal to that of AC3_128k, and AAC_112k while having a significantly lower bitrate (13 kbps). MFCCGAN_36k achieved higher NISQA-MOS results compared to AAC_48k while having a 20% lower bitrate. Furthermore, MFCCGAN_13k obtained NISQAMOS= 3.9 which is much higher than AAC_24k, AAC_32k, AC3_32k, and AAC_48k. For future work, we finally suggest adopting loss functions optimizing intelligibility and perceptual metrics in the MFCCGAN structure to improve quality and intelligibility simultaneously.Comment: Accepted in ABU Technical Review journal 2023/

    Cascaded Cross-Module Residual Learning towards Lightweight End-to-End Speech Coding

    Full text link
    Speech codecs learn compact representations of speech signals to facilitate data transmission. Many recent deep neural network (DNN) based end-to-end speech codecs achieve low bitrates and high perceptual quality at the cost of model complexity. We propose a cross-module residual learning (CMRL) pipeline as a module carrier with each module reconstructing the residual from its preceding modules. CMRL differs from other DNN-based speech codecs, in that rather than modeling speech compression problem in a single large neural network, it optimizes a series of less-complicated modules in a two-phase training scheme. The proposed method shows better objective performance than AMR-WB and the state-of-the-art DNN-based speech codec with a similar network architecture. As an end-to-end model, it takes raw PCM signals as an input, but is also compatible with linear predictive coding (LPC), showing better subjective quality at high bitrates than AMR-WB and OPUS. The gain is achieved by using only 0.9 million trainable parameters, a significantly less complex architecture than the other DNN-based codecs in the literature.Comment: Accepted for publication in INTERSPEECH 201

    Speech Resynthesis from Discrete Disentangled Self-Supervised Representations

    Get PDF
    We propose using self-supervised discrete representations for the task of speech resynthesis. To generate disentangled representation, we separately extract low-bitrate representations for speech content, prosodic information, and speaker identity. This allows to synthesize speech in a controllable manner. We analyze various state-of-the-art, self-supervised representation learning methods and shed light on the advantages of each method while considering reconstruction quality and disentanglement properties. Specifically, we evaluate the F0 reconstruction, speaker identification performance (for both resynthesis and voice conversion), recordings' intelligibility, and overall quality using subjective human evaluation. Lastly, we demonstrate how these representations can be used for an ultra-lightweight speech codec. Using the obtained representations, we can get to a rate of 365 bits per second while providing better speech quality than the baseline methods. Audio samples can be found under the following link: speechbot.github.io/resynthesis.Comment: In Proceedings of Interspeech 202
    corecore