5 research outputs found

    A New Cryptosystem Based On Hidden Order Groups

    Get PDF
    Let G1G_1 be a cyclic multiplicative group of order nn. It is known that the Diffie-Hellman problem is random self-reducible in G1G_1 with respect to a fixed generator gg if ϕ(n)\phi(n) is known. That is, given g,gx∈G1g, g^x\in G_1 and having oracle access to a `Diffie-Hellman Problem' solver with fixed generator gg, it is possible to compute g1/x∈G1g^{1/x} \in G_1 in polynomial time (see theorem 3.2). On the other hand, it is not known if such a reduction exists when ϕ(n)\phi(n) is unknown (see conjuncture 3.1). We exploit this ``gap'' to construct a cryptosystem based on hidden order groups and present a practical implementation of a novel cryptographic primitive called an \emph{Oracle Strong Associative One-Way Function} (O-SAOWF). O-SAOWFs have applications in multiparty protocols. We demonstrate this by presenting a key agreement protocol for dynamic ad-hoc groups.Comment: removed examples for multiparty key agreement and join protocols, since they are redundan

    Some Facets of Complexity Theory and Cryptography: A Five-Lectures Tutorial

    Full text link
    In this tutorial, selected topics of cryptology and of computational complexity theory are presented. We give a brief overview of the history and the foundations of classical cryptography, and then move on to modern public-key cryptography. Particular attention is paid to cryptographic protocols and the problem of constructing the key components of such protocols such as one-way functions. A function is one-way if it is easy to compute, but hard to invert. We discuss the notion of one-way functions both in a cryptographic and in a complexity-theoretic setting. We also consider interactive proof systems and present some interesting zero-knowledge protocols. In a zero-knowledge protocol one party can convince the other party of knowing some secret information without disclosing any bit of this information. Motivated by these protocols, we survey some complexity-theoretic results on interactive proof systems and related complexity classes.Comment: 57 pages, 17 figures, Lecture Notes for the 11th Jyvaskyla Summer Schoo
    corecore