9,327 research outputs found

    Lossy Compression with Near-uniform Encoder Outputs

    Full text link
    It is well known that lossless compression of a discrete memoryless source with near-uniform encoder output is possible at a rate above its entropy if and only if the encoder is randomized. This work focuses on deriving conditions for near-uniform encoder output(s) in the Wyner-Ziv and the distributed lossy compression problems. We show that in the Wyner-Ziv problem, near-uniform encoder output and operation close to the WZ-rate limit is simultaneously possible, whereas in the distributed lossy compression problem, jointly near-uniform outputs is achievable in the interior of the distributed lossy compression rate region if the sources share non-trivial G\'{a}cs-K\"{o}rner common information.Comment: Submitted to the 2016 IEEE International Symposium on Information Theory (11 Pages, 3 Figures

    Universal Sampling Rate Distortion

    Full text link
    We examine the coordinated and universal rate-efficient sampling of a subset of correlated discrete memoryless sources followed by lossy compression of the sampled sources. The goal is to reconstruct a predesignated subset of sources within a specified level of distortion. The combined sampling mechanism and rate distortion code are universal in that they are devised to perform robustly without exact knowledge of the underlying joint probability distribution of the sources. In Bayesian as well as nonBayesian settings, single-letter characterizations are provided for the universal sampling rate distortion function for fixed-set sampling, independent random sampling and memoryless random sampling. It is illustrated how these sampling mechanisms are successively better. Our achievability proofs bring forth new schemes for joint source distribution-learning and lossy compression

    The Likelihood Encoder for Lossy Compression

    Full text link
    A likelihood encoder is studied in the context of lossy source compression. The analysis of the likelihood encoder is based on the soft-covering lemma. It is demonstrated that the use of a likelihood encoder together with the soft-covering lemma yields simple achievability proofs for classical source coding problems. The cases of the point-to-point rate-distortion function, the rate-distortion function with side information at the decoder (i.e. the Wyner-Ziv problem), and the multi-terminal source coding inner bound (i.e. the Berger-Tung problem) are examined in this paper. Furthermore, a non-asymptotic analysis is used for the point-to-point case to examine the upper bound on the excess distortion provided by this method. The likelihood encoder is also related to a recent alternative technique using properties of random binning

    Thouless-Anderson-Palmer Approach for Lossy Compression

    Full text link
    We study an ill-posed linear inverse problem, where a binary sequence will be reproduced using a sparce matrix. According to the previous study, this model can theoretically provide an optimal compression scheme for an arbitrary distortion level, though the encoding procedure remains an NP-complete problem. In this paper, we focus on the consistency condition for a dynamics model of Markov-type to derive an iterative algorithm, following the steps of Thouless-Anderson-Palmer's. Numerical results show that the algorithm can empirically saturate the theoretical limit for the sparse construction of our codes, which also is very close to the rate-distortion function.Comment: 10 pages, 3 figure
    • …
    corecore