2,319 research outputs found

    Data compression in remote sensing applications

    Get PDF
    A survey of current data compression techniques which are being used to reduce the amount of data in remote sensing applications is provided. The survey aspect is far from complete, reflecting the substantial activity in this area. The purpose of the survey is more to exemplify the different approaches being taken rather than to provide an exhaustive list of the various proposed approaches

    A Novel Rate Control Algorithm for Onboard Predictive Coding of Multispectral and Hyperspectral Images

    Get PDF
    Predictive coding is attractive for compression onboard of spacecrafts thanks to its low computational complexity, modest memory requirements and the ability to accurately control quality on a pixel-by-pixel basis. Traditionally, predictive compression focused on the lossless and near-lossless modes of operation where the maximum error can be bounded but the rate of the compressed image is variable. Rate control is considered a challenging problem for predictive encoders due to the dependencies between quantization and prediction in the feedback loop, and the lack of a signal representation that packs the signal's energy into few coefficients. In this paper, we show that it is possible to design a rate control scheme intended for onboard implementation. In particular, we propose a general framework to select quantizers in each spatial and spectral region of an image so as to achieve the desired target rate while minimizing distortion. The rate control algorithm allows to achieve lossy, near-lossless compression, and any in-between type of compression, e.g., lossy compression with a near-lossless constraint. While this framework is independent of the specific predictor used, in order to show its performance, in this paper we tailor it to the predictor adopted by the CCSDS-123 lossless compression standard, obtaining an extension that allows to perform lossless, near-lossless and lossy compression in a single package. We show that the rate controller has excellent performance in terms of accuracy in the output rate, rate-distortion characteristics and is extremely competitive with respect to state-of-the-art transform coding

    Statistical lossless compression of space imagery and general data in a reconfigurable architecture

    Get PDF

    Compression of spectral meteorological imagery

    Get PDF
    Data compression is essential to current low-earth-orbit spectral sensors with global coverage, e.g., meteorological sensors. Such sensors routinely produce in excess of 30 Gb of data per orbit (over 4 Mb/s for about 110 min) while typically limited to less than 10 Gb of downlink capacity per orbit (15 minutes at 10 Mb/s). Astro-Space Division develops spaceborne compression systems for compression ratios from as little as three to as much as twenty-to-one for high-fidelity reconstructions. Current hardware production and development at Astro-Space Division focuses on discrete cosine transform (DCT) systems implemented with the GE PFFT chip, a 32x32 2D-DCT engine. Spectral relations in the data are exploited through block mean extraction followed by orthonormal transformation. The transformation produces blocks with spatial correlation that are suitable for further compression with any block-oriented spatial compression system, e.g., Astro-Space Division's Laplacian modeler and analytic encoder of DCT coefficients

    Lossless compression of hyperspectral images

    Get PDF
    Band ordering and the prediction scheme are the two major aspects of hyperspectral imaging which have been studied to improve the performance of the compression system. In the prediction module, we propose spatio-spectral prediction methods. Two non-linear spectral prediction methods have been proposed in this thesis. NPHI (Non-linear Prediction for Hyperspectral Images) is based on a band look-ahead technique wherein a reference band is included in the prediction of pixels in the current band. The prediction technique estimates the variation between the contexts of the two bands to modify the weights computed in the reference band to predict the pixels in the current band. EPHI (Edge-based Prediction for Hyperspectral Images) is the modified NPHI technique wherein an edge-based analysis is used to classify the pixels into edges and non-edges in order to perform the prediction of the pixel in the current band. Three ordering methods have been proposed in this thesis. The first ordering method computes the local and global features in each band to group the bands. The bands in each group are ordered by estimating the compression ratios achieved between the entire band in the group and then ordering them using Kruskal\u27s algorithm. The other two methods of ordering compute the compression ratios between b-neighbors in performing the band ordering

    Study and simulation of low rate video coding schemes

    Get PDF
    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design

    Diffusion-based inpainting for coding remote-sensing data

    Get PDF
    Inpainting techniques based on partial differential equations (PDEs) such as diffusion processes are gaining growing importance as a novel family of image compression methods. Nevertheless, the application of inpainting in the field of hyperspectral imagery has been mainly focused on filling in missing information or dead pixels due to sensor failures. In this paper we propose a novel PDE-based inpainting algorithm to compress hyperspectral images. The method inpaints separately the known data in the spatial and in the spectral dimensions. Then it applies a prediction model to the final inpainting solution to obtain a representation much closer to the original image. Experimental results over a set of hyperspectral images indicate that the proposed algorithm can perform better than a recent proposed extension to prediction-based standard CCSDS-123.0 at low bitrate, better than JPEG 2000 Part 2 with the DWT 9/7 as a spectral transform at all bit-rates, and competitive to JPEG 2000 with principal component analysis (PCA), the optimal spectral decorrelation transform for Gaussian sources

    Hyperspectral Image Compression Using Prediction-based Band Reordering Technique

    Get PDF
    The hyperspectral image represents various spectral properties Because it consists of broad spectral information of ground materials that can be used for various applications, These images are collected as large amounts of data that must be processed and transmitted to the ground station. These acquired images contain redundant spectral information that has to be reduced in order to reduce transmission and storage capacity. This work focuses on preserving their quality while compressing them using band reordering techniques and prediction coding. This can be accomplished by preprocessing in which sub-bands are decomposed and bands are reordered into unsequenced compression can be accomplished through using the technique of linear prediction. The report discusses the Pavia University hyperspectral image data cube, which was acquired via a sensor known as a reflected optics system imaging spectrometer (ROSIS-3) over the city of Pavia, Italy

    Compression of Spectral Images

    Get PDF
    • …
    corecore