3,608 research outputs found

    Lossless Source Coding in the Point-to-Point, Multiple Access, and Random Access Scenarios

    Get PDF
    This paper treats point-to-point, multiple access and random access lossless source coding in the finite-blocklength regime. A random coding technique is developed, and its power in analyzing the third-order coding performance is demonstrated in all three scenarios. Results include a third-order-optimal characterization of the Slepian-Wolf rate region and a proof showing that for dependent sources, the independent encoders used by Slepian-Wolf codes can achieve the same third-order- optimal performance as a single joint encoder. The concept of random access source coding, which generalizes the multiple access scenario to allow for a subset of participating encoders that is unknown a priori to both the encoders and the decoder, is introduced. Contributions include a new definition of the probabilistic model for a random access-discrete multiple source, a general random access source coding scheme that employs a rateless code with sporadic feedback, and an analysis demonstrating via a random coding argument that there exists a deterministic code of the proposed structure that simultaneously achieves the third- order-optimal performance of Slepian-Wolf codes for all possible subsets of encoders

    Lossless Source Coding in the Point-to-Point, Multiple Access, and Random Access Scenarios

    Get PDF
    This paper treats point-to-point, multiple access and random access lossless source coding in the finite-blocklength regime. A random coding technique is developed, and its power in analyzing the third-order coding performance is demonstrated in all three scenarios. Via a connection to composite hypothesis testing, a new converse that tightens previously known converses for Slepian-Wolf source coding is established. Asymptotic results include a third-order characterization of the Slepian-Wolf rate region and a proof showing that for dependent sources, the independent encoders used by Slepian-Wolf codes can achieve the same third-order-optimal performance as a single joint encoder. The concept of random access source coding, which generalizes the multiple access scenario to allow for a subset of participating encoders that is unknown a priori to both the encoders and the decoder, is introduced. Contributions include a new definition of the probabilistic model for a random access source, a general random access source coding scheme that employs a rateless code with sporadic feedback, and an analysis demonstrating via a random coding argument that there exists a deterministic code of the proposed structure that simultaneously achieves the third-order-optimal performance of Slepian-Wolf codes for all possible subsets of encoders.Comment: 42 pages, 10 figures. Part of this work was presented at ISIT'1

    Lossless Source Coding in the Point-to-Point, Multiple Access, and Random Access Scenarios

    Get PDF
    This paper treats point-to-point, multiple access and random access lossless source coding in the finite-blocklength regime. A random coding technique is developed, and its power in analyzing the third-order coding performance is demonstrated in all three scenarios. Results include a third-order-optimal characterization of the Slepian-Wolf rate region and a proof showing that for dependent sources, the independent encoders used by Slepian-Wolf codes can achieve the same third-order- optimal performance as a single joint encoder. The concept of random access source coding, which generalizes the multiple access scenario to allow for a subset of participating encoders that is unknown a priori to both the encoders and the decoder, is introduced. Contributions include a new definition of the probabilistic model for a random access-discrete multiple source, a general random access source coding scheme that employs a rateless code with sporadic feedback, and an analysis demonstrating via a random coding argument that there exists a deterministic code of the proposed structure that simultaneously achieves the third- order-optimal performance of Slepian-Wolf codes for all possible subsets of encoders

    On the Performance of Lossless Joint Source-Channel Coding Based on Linear Codes

    Full text link
    A general lossless joint source-channel coding scheme based on linear codes is proposed and then analyzed in this paper. It is shown that a linear code with good joint spectrum can be used to establish limit-approaching joint source-channel coding schemes for arbitrary sources and channels, where the joint spectrum of the code is a generalization of the input-output weight distribution.Comment: To appear in Proc. 2006 IEEE Information Theory Workshop, October 22-26, 2006, Chengdu, China. (5 pages, 2 figures

    Network vector quantization

    Get PDF
    We present an algorithm for designing locally optimal vector quantizers for general networks. We discuss the algorithm's implementation and compare the performance of the resulting "network vector quantizers" to traditional vector quantizers (VQs) and to rate-distortion (R-D) bounds where available. While some special cases of network codes (e.g., multiresolution (MR) and multiple description (MD) codes) have been studied in the literature, we here present a unifying approach that both includes these existing solutions as special cases and provides solutions to previously unsolved examples

    Lossy Source Transmission over the Relay Channel

    Full text link
    Lossy transmission over a relay channel in which the relay has access to correlated side information is considered. First, a joint source-channel decode-and-forward scheme is proposed for general discrete memoryless sources and channels. Then the Gaussian relay channel where the source and the side information are jointly Gaussian is analyzed. For this Gaussian model, several new source-channel cooperation schemes are introduced and analyzed in terms of the squared-error distortion at the destination. A comparison of the proposed upper bounds with the cut-set lower bound is given, and it is seen that joint source-channel cooperation improves the reconstruction quality significantly. Moreover, the performance of the joint code is close to the lower bound on distortion for a wide range of source and channel parameters.Comment: Proceedings of the 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada, July 6 - 11, 200

    Linear-Codes-Based Lossless Joint Source-Channel Coding for Multiple-Access Channels

    Full text link
    A general lossless joint source-channel coding (JSCC) scheme based on linear codes and random interleavers for multiple-access channels (MACs) is presented and then analyzed in this paper. By the information-spectrum approach and the code-spectrum approach, it is shown that a linear code with a good joint spectrum can be used to establish limit-approaching lossless JSCC schemes for correlated general sources and general MACs, where the joint spectrum is a generalization of the input-output weight distribution. Some properties of linear codes with good joint spectra are investigated. A formula on the "distance" property of linear codes with good joint spectra is derived, based on which, it is further proved that, the rate of any systematic codes with good joint spectra cannot be larger than the reciprocal of the corresponding alphabet cardinality, and any sparse generator matrices cannot yield linear codes with good joint spectra. The problem of designing arbitrary rate coding schemes is also discussed. A novel idea called "generalized puncturing" is proposed, which makes it possible that one good low-rate linear code is enough for the design of coding schemes with multiple rates. Finally, various coding problems of MACs are reviewed in a unified framework established by the code-spectrum approach, under which, criteria and candidates of good linear codes in terms of spectrum requirements for such problems are clearly presented.Comment: 18 pages, 3 figure

    Achieving Marton's Region for Broadcast Channels Using Polar Codes

    Full text link
    This paper presents polar coding schemes for the 2-user discrete memoryless broadcast channel (DM-BC) which achieve Marton's region with both common and private messages. This is the best achievable rate region known to date, and it is tight for all classes of 2-user DM-BCs whose capacity regions are known. To accomplish this task, we first construct polar codes for both the superposition as well as the binning strategy. By combining these two schemes, we obtain Marton's region with private messages only. Finally, we show how to handle the case of common information. The proposed coding schemes possess the usual advantages of polar codes, i.e., they have low encoding and decoding complexity and a super-polynomial decay rate of the error probability. We follow the lead of Goela, Abbe, and Gastpar, who recently introduced polar codes emulating the superposition and binning schemes. In order to align the polar indices, for both schemes, their solution involves some degradedness constraints that are assumed to hold between the auxiliary random variables and the channel outputs. To remove these constraints, we consider the transmission of kk blocks and employ a chaining construction that guarantees the proper alignment of the polarized indices. The techniques described in this work are quite general, and they can be adopted to many other multi-terminal scenarios whenever there polar indices need to be aligned.Comment: 26 pages, 11 figures, accepted to IEEE Trans. Inform. Theory and presented in part at ISIT'1
    • …
    corecore