1,016 research outputs found

    Reversible Data Hiding Scheme with High Embedding Capacity Using Semi-Indicator-Free Strategy

    Get PDF
    A novel reversible data-hiding scheme is proposed to embed secret data into a side-matched-vector-quantization- (SMVQ-) compressed image and achieve lossless reconstruction of a vector-quantization- (VQ-) compressed image. The rather random distributed histogram of a VQ-compressed image can be relocated to locations close to zero by SMVQ prediction. With this strategy, fewer bits can be utilized to encode SMVQ indices with very small values. Moreover, no indicator is required to encode these indices, which yields extrahiding space to hide secret data. Hence, high embedding capacity and low bit rate scenarios are deposited. More specifically, in terms of the embedding rate, the bit rate, and the embedding capacity, experimental results show that the performance of the proposed scheme is superior to those of the former data hiding schemes for VQ-based, VQ/SMVQ-based, and search-order-coding- (SOC-) based compressed images

    Very fast watermarking by reversible contrast mapping

    Full text link
    Reversible contrast mapping (RCM) is a simple integer transform that applies to pairs of pixels. For some pairs of pixels, RCM is invertible, even if the least significant bits (LSBs) of the transformed pixels are lost. The data space occupied by the LSBs is suitable for data hiding. The embedded information bit-rates of the proposed spatial domain reversible watermarking scheme are close to the highest bit-rates reported so far. The scheme does not need additional data compression, and, in terms of mathematical complexity, it appears to be the lowest complexity one proposed up to now. A very fast lookup table implementation is proposed. Robustness against cropping can be ensured as well

    A contrast-sensitive reversible visible image watermarking technique

    Get PDF
    A reversible (also called lossless, distortion-free, or invertible) visible watermarking scheme is proposed to satisfy the applications, in which the visible watermark is expected to combat copyright piracy but can be removed to losslessly recover the original image. We transparently reveal the watermark image by overlapping it on a user-specified region of the host image through adaptively adjusting the pixel values beneath the watermark, depending on the human visual system-based scaling factors. In order to achieve reversibility, a reconstruction/ recovery packet, which is utilized to restore the watermarked area, is reversibly inserted into non-visibly-watermarked region. The packet is established according to the difference image between the original image and its approximate version instead of its visibly watermarked version so as to alleviate its overhead. For the generation of the approximation, we develop a simple prediction technique that makes use of the unaltered neighboring pixels as auxiliary information. The recovery packet is uniquely encoded before hiding so that the original watermark pattern can be reconstructed based on the encoded packet. In this way, the image recovery process is carried out without needing the availability of the watermark. In addition, our method adopts data compression for further reduction in the recovery packet size and improvement in embedding capacity. The experimental results demonstrate the superiority of the proposed scheme compared to the existing methods
    corecore