75 research outputs found

    VLSI Design

    Get PDF
    This book provides some recent advances in design nanometer VLSI chips. The selected topics try to present some open problems and challenges with important topics ranging from design tools, new post-silicon devices, GPU-based parallel computing, emerging 3D integration, and antenna design. The book consists of two parts, with chapters such as: VLSI design for multi-sensor smart systems on a chip, Three-dimensional integrated circuits design for thousand-core processors, Parallel symbolic analysis of large analog circuits on GPU platforms, Algorithms for CAD tools VLSI design, A multilevel memetic algorithm for large SAT-encoded problems, etc

    Free-space holographic optical interconnects in dichromated gelatin

    Get PDF
    Abstract unavailable please refer to PDF

    High-Performance Computing for the Electromagnetic Modeling and Simulation of Interconnects

    Get PDF
    The electromagnetic modeling of packages and interconnects plays a very important role in the design of high-speed digital circuits, and is most efficiently performed by using computer-aided design algorithms. In recent years, packaging has become a critical area in the design of high-speed communication systems and fast computers, and the importance of the software support for their development has increased accordingly. Throughout this project, our efforts have focused on the development of modeling and simulation techniques and algorithms that permit the fast computation of the electrical parameters of interconnects and the efficient simulation of their electrical performance

    The effect of an optical network on-chip on the performance of chip multiprocessors

    Get PDF
    Optical networks on-chip (ONoC) have been proposed to reduce power consumption and increase bandwidth density in high performance chip multiprocessors (CMP), compared to electrical NoCs. However, as buffering in an ONoC is not viable, the end-to-end message path needs to be acquired in advance during which the message is buffered at the network ingress. This waiting latency is therefore a combination of path setup latency and contention and forms a significant part of the total message latency. Many proposed ONoCs, such as Single Writer, Multiple Reader (SWMR), avoid path setup latency at the expense of increased optical components. In contrast, this thesis investigates a simple circuit-switched ONoC with lower component count where nodes need to request a channel before transmission. To hide the path setup latency, a coherence-based message predictor is proposed, to setup circuits before message arrival. Firstly, the effect of latency and bandwidth on application performance is thoroughly investigated using full-system simulations of shared memory CMPs. It is shown that the latency of an ideal NoC affects the CMP performance more than the NoC bandwidth. Increasing the number of wavelengths per channel decreases the serialisation latency and improves the performance of both ONoC types. With 2 or more wavelengths modulating at 25 Gbit=s , the ONoCs will outperform a conventional electrical mesh (maximal speedup of 20%). The SWMR ONoC outperforms the circuit-switched ONoC. Next coherence-based prediction techniques are proposed to reduce the waiting latency. The ideal coherence-based predictor reduces the waiting latency by 42%. A more streamlined predictor (smaller than a L1 cache) reduces the waiting latency by 31%. Without prediction, the message latency in the circuit-switched ONoC is 11% larger than in the SWMR ONoC. Applying the realistic predictor reverses this: the message latency in the SWMR ONoC is now 18% larger than the predictive circuitswitched ONoC

    Low Power Memory/Memristor Devices and Systems

    Get PDF
    This reprint focusses on achieving low-power computation using memristive devices. The topic was designed as a convenient reference point: it contains a mix of techniques starting from the fundamental manufacturing of memristive devices all the way to applications such as physically unclonable functions, and also covers perspectives on, e.g., in-memory computing, which is inextricably linked with emerging memory devices such as memristors. Finally, the reprint contains a few articles representing how other communities (from typical CMOS design to photonics) are fighting on their own fronts in the quest towards low-power computation, as a comparison with the memristor literature. We hope that readers will enjoy discovering the articles within

    Multi-chip module interconnections at microwave frequencies: electromagnetic simulation and material characterisation

    Get PDF
    In this work both the interconnections and materials used in multi-chip modules (MCMs) at microwave frequencies have been investigated. The electrical behaviour of the interconnections was studied using commercially available 2.SD and 3D electromagnetic simulators (HFSSTM, MDSTM and Momentumℱ). State-of-the-art conductive and dielectric film materials used in the fabrication of multi-layer MCM structures were characterized using microstrip/wave guide resonator techniques. The models chosen for simulation of interconnections are commensurate with those in current use in MCM technology. Crosstalk between microstrip conductors in multi-layer MCM structures was simulated and new knowledge leading to new design rules was obtained.Typical elements in MCM interconnect structures, such as vias, bends and airbridges were also investigated. The principal features of these elements were simulated and the results were obtained in S-parameter form. Based on the simulated results, these parasitic elements were modelled in terms of their equivalent circuits which can be used in circuit simulators to aid more rigorous MCM circuit design. A microstrip ring resonator, fabricated using the newly developed conductive material from Heraeus, was employed to measure the line loss. New techniques have been developed to measure the permittivity and loss tangent of thin dielectric films. In the previous methods for the measurement of these films, the accuracy in measuring the relative permittivity is limited and there is no available technique to measure the loss tangent. A novel cavity perturbation method was developed to accurately measure both the relative permittivity and loss tangent of the films deposited on a supporting substrate. An additional independent technique, derived from transmission line theory, for measuring the relative permittivity of dielectric film was also established. A particular feature of the new teclmiques, which led to high accuracy in measuring dielectric constant and loss tangent was the positioning of the dielectric film in the region of maximum electric field strength, thereby ensuring maximum interaction between the electric field and the film material. A rigorous error analysis was performed on the new techniques, which led to the establishment of practical measurement correction factors. A simple and rigorous method has also been developed to accurately measure the loss tangent of dielectrics with known dielectric constant using a resonant cavity. The novel method eliminates the need for any physical measurement of the dielectric sample. The new technique should permit the development of techniques for very high frequency characterisation of dielectric materials

    Yield improvement of VLSI layout using local design rules

    Get PDF

    Caractérisation et modélisation d'interconnexions. Développement de nouvelles solutions pour la transmission d'informations au sein des cartes et puces électroniques.

    Get PDF
    Since the first IC in 1959 the performances and computing capacity of electronic devices have always grown, following thus the well-known empirical Moore’s law which says that the number of transistors in a dense integrated circuit doubles approximately every 18 months. This prevision is still verified even if some limitations appears like for example the limitation of the clock frequency which grow less than the projection that the ITRS (International Technology Roadmap for Semiconductors) has made in 2000. One of the stumbling point comes from interconnects which ensure the transmission of information inside electronic chips or cards. The interconnects imply delay, signal distortion, crosstalk and power dissipation and they now must be taken into account during electronic device design. So the researches depicted in this manuscript deal with the modelling of interconnect and study of new solutions to overcome problems due to classical interconnects. These works have been realized in Lab-STICC laboratory with the help of colleagues, post-doc, PhDs and Master Students. The manuscript include three chapters, the first one concerns researches on modelling aspects, the second is about alternative solutions to classical wired interconnects and to conclude the research projects for the next years are presented.The first chapter concern researches about modelling which aim to develop reliable models in view to simulate more quickly the electrical behavior of interconnects. Firstly the collaborations concerning the development of model-order reduction are presented. Then with the aim to evaluate the impact of inductive behavior, the current return patch problem and so the extraction of loop inductance is treated. The 3D discontinuities and 3D environment effects are presented in the third part of this chapter. For example the parallel grid influences on propagation are explored as well as the case of coupling between microvias and parallel-plates cavities inside multilayer PCB.The second chapter is about research of new solutions to overcome the limitation due to classical wired interconnects. A review of envisaged alternative solutions like for example optical interconnects and CNT (carbon Nano Tube) is first presented. Then a focus on RF guided interconnect is made and constraints in term of bandwidth are explained and some coupling techniques are explored. These studies naturally lead to exploration of the paradigm of wireless interconnects and the preliminary researches on radio transmission between two circuits placed on a PCB are shown. All these approaches of RF wireless interconnect are prelude to the research projects which are developed in a third chapter of the manuscript.The development of the draft over 4 years is based on the BBC project (wireless interconnect network on chip or in board for Broadcast-Based parallel Computing) funded by the Labex COMINLABS and which will begin in October 2016. The aims of this project are outlined as well as the aims of another project entitled “BROADWAYS” (Broadcast-Based new paradigms of ubiquitous memory mapping, bandwidth allocation and parallel programing made possible by Radio Network On Chip) which is currently in the second step of review by the ANR. To conclude this research part other embryonic researches are presented as well as long term researches envisaged like terahertz applications of the use of graphene for microwave applications.Depuis les premiers circuits intĂ©grĂ©s en 1959 les composants et les systĂšmes Ă©lectroniques n’ont cessĂ© de voir leurs performances augmenter suivant ainsi la loi empirique de Gordon Moore qui prĂ©voit un doublement de la complexitĂ© des circuits tous les 18 mois. Cette prĂ©vision reste aujourd’hui toujours vĂ©rifiĂ©e mĂȘme si nous constatons depuis une dizaine d’annĂ©es que les frĂ©quences d’horloges stagnent autour de 4-5 GHz alors que l’ITRS (International Technology Roadmap for Semiconductors) prĂ©voyait dans les annĂ©es 2000 des frĂ©quences de travail pouvant atteindre 40 GHz pour 2016. L’un des facteurs limitant la progression des performances vient des interconnexions mĂ©talliques servant au transport de l’information au sein des systĂšmes Ă©lectroniques. Les travaux de recherche prĂ©sentĂ©s dans le cadre de l’obtention de l‘habilitation Ă  diriger des recherches concernent d’une part les travaux rĂ©alisĂ©s sur la modĂ©lisation des interconnexions et d’autre part ceux sur l’étude de solutions alternatives Ă  ces interconnexions classiques. Ces travaux ont Ă©tĂ© rĂ©alisĂ©s au sein du Lab-STICC en collaboration avec plusieurs collĂšgues et lors de l’encadrement de plusieurs post-doctorants, doctorants et stagiaires de master recherche. Le mĂ©moire comporte trois chapitres principaux, le premier concerne les travaux sur la modĂ©lisation des interconnexions, le second porte sur l’étude de solutions alternatives Ă  ces interconnexions classiques et le dernier permet la prĂ©sentation des projets de recherches pour les prochaines annĂ©es.L’objectif de nos travaux sur la modĂ©lisation des interconnexions consiste au dĂ©veloppement de modĂšles fiables permettant d’apprĂ©hender leurs effets sur les signaux. Dans un premier temps, les travaux portant sur l’obtention de modĂšles Ă  complexitĂ© rĂ©duite sont prĂ©sentĂ©s. Puis, afin d’évaluer l’impact des effets inductifs des interconnexions, nous prĂ©sentons les travaux sur l’identification des chemins de retours du courant dans un rĂ©seau comprenant plusieurs lignes et qui sont nĂ©cessaires pour dĂ©terminer les inductances de boucles. La prise en compte de l’environnement 3D des interconnexions fait l’objet de la troisiĂšme partie de ce chapitre. Nous traitons ainsi de l’influence de diffĂ©rentes discontinuitĂ©s et nous prĂ©sentons des rĂšgles de design permettant la limitation des risques de conversion de mode de propagation. Dans le cadre de structures multicouches, nous abordons l’influence de grilles mĂ©talliques placĂ©es au voisinage d’une ligne sur la propagation des signaux. Enfin nous traitons des risques de couplage entre des vias et les modes de cavitĂ©s au sein des structures PCB multicouches.La seconde thĂ©matique dĂ©veloppĂ©e dans ce mĂ©moire porte sur le dĂ©veloppement de solutions alternatives aux interconnexions classiques. AprĂšs avoir listĂ© certaines de ces solutions telle que les interconnexions optiques ou les nanotubes de carbone, nous prĂ©sentons plus particuliĂšrement les interconnexions RF qui vĂ©hiculent l’information numĂ©rique sur porteuse Ă  haute frĂ©quence. Dans un premier temps nous analysons les interconnexions RF guidĂ©es qui utilisent une ligne de transmission comme support pour transporter l’information. A partir de l’étude des modes d’accĂšs multiples nous montrons que les canaux doivent ĂȘtre large bande et nous explorons diverses façons de transmettre l’énergie Ă  la ligne de transmission. Enfin nous prĂ©sentons quelques exemples de performances obtenues Ă  l’aide de dĂ©monstrateurs numĂ©riques. Ces Ă©tudes des interconnexions RF guidĂ©es nous ont naturellement amenĂ© Ă  considĂ©rer les possibilitĂ©s de transmission par voie hertzienne des informations au sein des cartes et puces Ă©lectroniques. Nous avons ainsi analysĂ© Ă  l’aide de dĂ©monstrateurs trĂšs simples les niveaux de transmission entre deux circuits placĂ©s sur une mĂȘme carte PCB (Printed Circuit Board).Ces Ă©tudes initiales sur les interconnexions radios ou sans fils servent de point d’appui aux projets de recherche prĂ©sentĂ©s Ă  la fin de ce manuscrit. La philosophie du projet BBC (wireless interconnect network on chip or in board for Broadcast-Based parallel Computing) financĂ© par le Labex COMINLABS Ă  partir d’octobre est prĂ©sentĂ© de mĂȘme que celle du projet ANR Broadways (Broadcast-Based new paradigms of ubiquitous memory mapping, bandwidth allocation and parallel programing made possible by Radio Network On Chip) en seconde phase d’étude auprĂšs de l’ANR

    High-Speed and Low-Energy On-Chip Communication Circuits.

    Full text link
    Continuous technology scaling sharply reduces transistor delays, while fixed-length global wire delays have increased due to less wiring pitch with higher resistance and coupling capacitance. Due to this ever growing gap, long on-chip interconnects pose well-known latency, bandwidth, and energy challenges to high-performance VLSI systems. Repeaters effectively mitigate wire RC effects but do little to improve their energy costs. Moreover, the increased complexity and high level of integration requires higher wire densities, worsening crosstalk noise and power consumption of conventionally repeated interconnects. Such increasing concerns in global on-chip wires motivate circuits to improve wire performance and energy while reducing the number of repeaters. This work presents circuit techniques and investigation for high-performance and energy-efficient on-chip communication in the aspects of encoding, data compression, self-timed current injection, signal pre-emphasis, low-swing signaling, and technology mapping. The improved bus designs also consider the constraints of robust operation and performance/energy gains across process corners and design space. Measurement results from 5mm links on 65nm and 90nm prototype chips validate 2.5-3X improvement in energy-delay product.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/75800/1/jseo_1.pd
    • 

    corecore