4,484,821 research outputs found
The Macroeconomic Loss Function: A Critical Note
The standard loss function counts both positive and negative deviations from the output and inflation targets as losses. But if the sample period is long enough, then output growth in excess of the target, and often also inflation rates that are below target, should be counted as gains instead of losses.loss functions, policy evaluation
Competitive on-line learning with a convex loss function
We consider the problem of sequential decision making under uncertainty in
which the loss caused by a decision depends on the following binary
observation. In competitive on-line learning, the goal is to design decision
algorithms that are almost as good as the best decision rules in a wide
benchmark class, without making any assumptions about the way the observations
are generated. However, standard algorithms in this area can only deal with
finite-dimensional (often countable) benchmark classes. In this paper we give
similar results for decision rules ranging over an arbitrary reproducing kernel
Hilbert space. For example, it is shown that for a wide class of loss functions
(including the standard square, absolute, and log loss functions) the average
loss of the master algorithm, over the first observations, does not exceed
the average loss of the best decision rule with a bounded norm plus
. Our proof technique is very different from the standard ones and
is based on recent results about defensive forecasting. Given the probabilities
produced by a defensive forecasting algorithm, which are known to be well
calibrated and to have good resolution in the long run, we use the expected
loss minimization principle to find a suitable decision.Comment: 26 page
Stein-Rule Estimation under an Extended Balanced Loss Function
This paper extends the balanced loss function to a more general set
up. The ordinary least squares and Stein-rule estimators are exposed to
this general loss function with quadratic loss structure in a linear regression
model. Their risks are derived when the disturbances in the linear regression
model are not necessarily normally distributed. The dominance of ordinary
least squares and Stein-rule estimators over each other and the effect of
departure from normality assumption of disturbances on the risk property
is studied
- …
