4,484,821 research outputs found

    The Macroeconomic Loss Function: A Critical Note

    Get PDF
    The standard loss function counts both positive and negative deviations from the output and inflation targets as losses. But if the sample period is long enough, then output growth in excess of the target, and often also inflation rates that are below target, should be counted as gains instead of losses.loss functions, policy evaluation

    Competitive on-line learning with a convex loss function

    Get PDF
    We consider the problem of sequential decision making under uncertainty in which the loss caused by a decision depends on the following binary observation. In competitive on-line learning, the goal is to design decision algorithms that are almost as good as the best decision rules in a wide benchmark class, without making any assumptions about the way the observations are generated. However, standard algorithms in this area can only deal with finite-dimensional (often countable) benchmark classes. In this paper we give similar results for decision rules ranging over an arbitrary reproducing kernel Hilbert space. For example, it is shown that for a wide class of loss functions (including the standard square, absolute, and log loss functions) the average loss of the master algorithm, over the first NN observations, does not exceed the average loss of the best decision rule with a bounded norm plus O(N1/2)O(N^{-1/2}). Our proof technique is very different from the standard ones and is based on recent results about defensive forecasting. Given the probabilities produced by a defensive forecasting algorithm, which are known to be well calibrated and to have good resolution in the long run, we use the expected loss minimization principle to find a suitable decision.Comment: 26 page

    Stein-Rule Estimation under an Extended Balanced Loss Function

    Get PDF
    This paper extends the balanced loss function to a more general set up. The ordinary least squares and Stein-rule estimators are exposed to this general loss function with quadratic loss structure in a linear regression model. Their risks are derived when the disturbances in the linear regression model are not necessarily normally distributed. The dominance of ordinary least squares and Stein-rule estimators over each other and the effect of departure from normality assumption of disturbances on the risk property is studied
    corecore