2 research outputs found

    Loss Visibility Optimized Real-time Video Transmission over MIMO Systems

    Full text link
    The structured nature of video data motivates introducing video-aware decisions that make use of this structure for improved video transmission over wireless networks. In this paper, we introduce an architecture for real-time video transmission over multiple-input multiple-output (MIMO) wireless communication systems using loss visibility side information. We quantify the perceptual importance of a packet through the packet loss visibility and use the loss visibility distribution to provide a notion of relative packet importance. To jointly achieve video quality and low latency, we define the optimization objective function as the throughput weighted by the loss visibility of each packet, a proxy for the total perceptual value of successful packets per unit time. We solve the problem of mapping video packets to MIMO subchannels and adapting per-stream rates to maximize the proposed objective. We show that the solution enables jointly reaping gains in terms of improved video quality and lower latency. Optimized packet-stream mapping enables transmission of more relevant packets over more reliable streams while unequal modulation opportunistically increases the transmission rate on the stronger streams to enable low latency delivery of high priority packets. We extend the solution to capture codebook-based limited feedback and MIMO mode adaptation. Results show that the composite quality and throughput gains are significant under full channel state information as well as limited feedback. Tested on H.264-encoded video sequences, for a 4x4 MIMO with 3 spatial streams, the proposed architecture achieves 8 dB power reduction for the same video quality and supports 2.4x higher throughput due to unequal modulation. Furthermore, the gains are achieved at the expense of few bits of cross-layer overhead rather than a complex cross-layer design.Comment: Submitted to IEEE Transactions on Circuits and Systems for Video Technolog

    WiFlix: Adaptive Video Streaming in Massive MU-MIMO Wireless Networks

    Full text link
    We consider the problem of simultaneous on-demand streaming of stored video to multiple users in a multi-cell wireless network where multiple unicast streaming sessions are run in parallel and share the same frequency band. Each streaming session is formed by the sequential transmission of video "chunks," such that each chunk arrives into the corresponding user playback buffer within its playback deadline. We formulate the problem as a Network Utility Maximization (NUM) where the objective is to fairly maximize users' video streaming Quality of Experience (QoE) and then derive an iterative control policy using Lyapunov Optimization, which solves the NUM problem up to any level of accuracy and yields an online protocol with control actions at every iteration decomposing into two layers interconnected by the users' request queues : i) a video streaming adaptation layer reminiscent of DASH, implemented at each user node; ii) a transmission scheduling layer where a max-weight scheduler is implemented at each base station. The proposed chunk request scheme is a pull strategy where every user opportunistically requests video chunks from the neighboring base stations and dynamically adapts the quality of its requests based on the current size of the request queue. For the transmission scheduling component, we first describe the general max-weight scheduler and then particularize it to a wireless network where the base stations have multiuser MIMO (MU-MIMO) beamforming capabilities. We exploit the channel hardening effect of large-dimensional MIMO channels (massive MIMO) and devise a low complexity user selection scheme to solve the underlying combinatorial problem of selecting user subsets for downlink beamforming, which can be easily implemented and run independently at each base station.Comment: 30 pages. arXiv admin note: text overlap with arXiv:1304.808
    corecore