258,245 research outputs found
Monitor for physical property changes in solid propellants
Specially designed sensor is attached to or imbedded in propellant. When sensor is driven into vibration, it moves with a phase lag directly proportional to internal friction or loss coefficent. Resonance frequency of the system is related to Young's modulus. Modulus or internal friction can be monitored over long period of time
Supercooled Liquid Dynamics Studied via Shear-Mechanical Spectroscopy
We report dynamical shear-modulus measurements for five glass-forming liquids
(pentaphenyl trimethyl trisiloxane, diethyl phthalate, dibutyl phthalate,
1,2-propanediol, and m-touluidine). The shear-mechanical spectra are obtained
by the piezoelectric shear-modulus gauge (PSG) method. This technique allows
one to measure the shear modulus ( Pa) of the liquid within a
frequency range from 1 mHz to 10 kHz. We analyze the frequency-dependent
response functions to investigate whether time-temperature superposition (TTS)
is obeyed. We also study the shear-modulus loss-peak position and its
high-frequency part. It has been suggested that when TTS applies, the
high-frequency side of the imaginary part of the dielectric response decreases
like a power law of the frequency with an exponent -1/2. This conjecture is
analyzed on the basis of the shear mechanical data. We find that TTS is obeyed
for pentaphenyl trimethyl trisiloxane and in 1,2-propanediol while in the
remaining liquids evidence of a mechanical process is found. Although
the the high-frequency power law behavior of the shear-loss
may approach a limiting value of when lowering the temperature, we
find that the exponent lies systematically above this value (around 0.4). For
the two liquids without beta relaxation (pentaphenyl trimethyl trisiloxane and
1,2-propanediol) we also test the shoving model prediction, according to which
the the relaxation-time activation energy is proportional to the instantaneous
shear modulus. We find that the data are well described by this model.Comment: 7 pages, 6 figure
Dynamics of a colloidal glass during stress-mediated structural arrest
We employ parallel superposition rheology to study the dynamics of an aging
colloidal glass in the presence of a mean field stress. Over a range of
intermediate stresses, the loss modulus exceeds the storage modulus at short
times but develops a maximum concomitant with a crossover between the two as
the system ages. This is attended by a narrowing of the loss peak on increasing
stress. We show that this feature is characteristic of the structural arrest in
these materials, which is made observable on reasonable timescales by the
activating influence of the stress. The arrest time displays an exponential
dependence on inverse stress. These results provide experimental validation of
the role of stress as an effective temperature in soft glassy systems as has
been advanced in recent theoretical frameworks.Comment: 5 pages, 5 figure
Modeling carbon black reinforcement in rubber compounds
One of the advocated reinforcement mechanisms is the formation by the filler of a network interpenetrating the polymer network. The deformation and reformation of the filler network allows the explanation of low strain dynamic physical properties of the composite. The present model relies on a statistical study of a collection of elementary mechanical systems, This leads to a mathematical approach of the complex modulus G* = G' + iG". The storage and loss modulus (G' and G", respectively), are expressed in the form of two integrals capable of modeling their Variation with respect to strain
Dynamic Hardness Tester and Cure Meter
The Shore hardness tester is used extensively throughout industry to determine the static modulus of materials. The new apparatus described here extends the capability of an indentor-type tester into the dynamic regime, and provides a measurement of the dynamic shear or Young's modulus and loss factor as a function of frequency. The instrument, model and data of typical rubber samples are given and compared to other dynamic measurements
Experimental evaluation of anti-stripping additives on porous asphalt mixtures
The open structure of porous asphalt mix influences its strength and durability against air, water and clogging materials. These factors cause loss of adhesion between binder-aggregate interface and loss of cohesion within the binder film. This could lead to stripping problem which contribute to premature failures as well as deterioration in the performance and service life of porous asphalt. Therefore, this study is aimed to evaluate the potential of diatomite as anti-stripping additives in porous asphalt and compared with hydrated lime and Ordinary Portland Cement (OPC). Field Emission Scanning Electron Microscopy (SEM) test and Energy Dispersive X-ray Spectroscopy analysis (EDX) were conducted to investigate the microstructure and chemical composition of the anti-stripping additives. A number of gyratory compacted samples of porous asphalt mixture with Malaysian gradation were prepared. Each sample was incorporated with 2% of anti-stripping additives as filler then mixed with polymer modified bitumen of PG76. The samples were measured for air voids content, permeability rate, resilient modulus and abrasion loss. The results indicate that samples prepared with hydrated lime show higher permeability rate and lower abrasion loss compared to samples with OPC and diatomite. However, the samples prepared with diatomite show enhanced resilient modulus compared to those with hydrated lime and OPC
Dielectric and conductivity relaxation in mixtures of glycerol with LiCl
We report a thorough dielectric characterization of the alpha relaxation of
glass forming glycerol with varying additions of LiCl. Nine salt concentrations
from 0.1 - 20 mol% are investigated in a frequency range of 20 Hz - 3 GHz and
analyzed in the dielectric loss and modulus representation. Information on the
dc conductivity, the dielectric relaxation time (from the loss) and the
conductivity relaxation time (from the modulus) is provided. Overall, with
increasing ion concentration, a transition from reorientationally to
translationally dominated behavior is observed and the translational ion
dynamics and the dipolar reorientational dynamics become successively coupled.
This gives rise to the prospect that by adding ions to dipolar glass formers,
dielectric spectroscopy may directly couple to the translational degrees of
freedom determining the glass transition, even in frequency regimes where
usually strong decoupling is observed.Comment: 8 pages, 7 figure
Resonant Microcantilevers for the Determination of the Loss Modulus of Thin Polymer Films
The increasing interest in polymer materials creates the need for accurate tools to characterize their mechanical properties. Due to energy dissipation in polymers during deformation, these materials exhibit viscoelastic behavior. Accurate determination of these viscoelastic properties and, more specifically, viscous losses, remains challenging and mainly unknown for thin polymer films. In this paper, a straightforward method to determine the loss modulus of organic materials using resonating microcantilevers has been developed. The extracted results for polyisobutylene show the variation of viscous losses over a large range of frequencies (7-350 kHz)
- …
