258,245 research outputs found

    Monitor for physical property changes in solid propellants

    Get PDF
    Specially designed sensor is attached to or imbedded in propellant. When sensor is driven into vibration, it moves with a phase lag directly proportional to internal friction or loss coefficent. Resonance frequency of the system is related to Young's modulus. Modulus or internal friction can be monitored over long period of time

    Supercooled Liquid Dynamics Studied via Shear-Mechanical Spectroscopy

    Full text link
    We report dynamical shear-modulus measurements for five glass-forming liquids (pentaphenyl trimethyl trisiloxane, diethyl phthalate, dibutyl phthalate, 1,2-propanediol, and m-touluidine). The shear-mechanical spectra are obtained by the piezoelectric shear-modulus gauge (PSG) method. This technique allows one to measure the shear modulus (105101010^{5} -10^{10} Pa) of the liquid within a frequency range from 1 mHz to 10 kHz. We analyze the frequency-dependent response functions to investigate whether time-temperature superposition (TTS) is obeyed. We also study the shear-modulus loss-peak position and its high-frequency part. It has been suggested that when TTS applies, the high-frequency side of the imaginary part of the dielectric response decreases like a power law of the frequency with an exponent -1/2. This conjecture is analyzed on the basis of the shear mechanical data. We find that TTS is obeyed for pentaphenyl trimethyl trisiloxane and in 1,2-propanediol while in the remaining liquids evidence of a mechanical β\beta process is found. Although the the high-frequency power law behavior ωα\omega^{-\alpha} of the shear-loss may approach a limiting value of α=0.5\alpha=0.5 when lowering the temperature, we find that the exponent lies systematically above this value (around 0.4). For the two liquids without beta relaxation (pentaphenyl trimethyl trisiloxane and 1,2-propanediol) we also test the shoving model prediction, according to which the the relaxation-time activation energy is proportional to the instantaneous shear modulus. We find that the data are well described by this model.Comment: 7 pages, 6 figure

    Dynamics of a colloidal glass during stress-mediated structural arrest

    Full text link
    We employ parallel superposition rheology to study the dynamics of an aging colloidal glass in the presence of a mean field stress. Over a range of intermediate stresses, the loss modulus exceeds the storage modulus at short times but develops a maximum concomitant with a crossover between the two as the system ages. This is attended by a narrowing of the loss peak on increasing stress. We show that this feature is characteristic of the structural arrest in these materials, which is made observable on reasonable timescales by the activating influence of the stress. The arrest time displays an exponential dependence on inverse stress. These results provide experimental validation of the role of stress as an effective temperature in soft glassy systems as has been advanced in recent theoretical frameworks.Comment: 5 pages, 5 figure

    Modeling carbon black reinforcement in rubber compounds

    Get PDF
    One of the advocated reinforcement mechanisms is the formation by the filler of a network interpenetrating the polymer network. The deformation and reformation of the filler network allows the explanation of low strain dynamic physical properties of the composite. The present model relies on a statistical study of a collection of elementary mechanical systems, This leads to a mathematical approach of the complex modulus G* = G' + iG". The storage and loss modulus (G' and G", respectively), are expressed in the form of two integrals capable of modeling their Variation with respect to strain

    Dynamic Hardness Tester and Cure Meter

    Get PDF
    The Shore hardness tester is used extensively throughout industry to determine the static modulus of materials. The new apparatus described here extends the capability of an indentor-type tester into the dynamic regime, and provides a measurement of the dynamic shear or Young's modulus and loss factor as a function of frequency. The instrument, model and data of typical rubber samples are given and compared to other dynamic measurements

    Experimental evaluation of anti-stripping additives on porous asphalt mixtures

    Get PDF
    The open structure of porous asphalt mix influences its strength and durability against air, water and clogging materials. These factors cause loss of adhesion between binder-aggregate interface and loss of cohesion within the binder film. This could lead to stripping problem which contribute to premature failures as well as deterioration in the performance and service life of porous asphalt. Therefore, this study is aimed to evaluate the potential of diatomite as anti-stripping additives in porous asphalt and compared with hydrated lime and Ordinary Portland Cement (OPC). Field Emission Scanning Electron Microscopy (SEM) test and Energy Dispersive X-ray Spectroscopy analysis (EDX) were conducted to investigate the microstructure and chemical composition of the anti-stripping additives. A number of gyratory compacted samples of porous asphalt mixture with Malaysian gradation were prepared. Each sample was incorporated with 2% of anti-stripping additives as filler then mixed with polymer modified bitumen of PG76. The samples were measured for air voids content, permeability rate, resilient modulus and abrasion loss. The results indicate that samples prepared with hydrated lime show higher permeability rate and lower abrasion loss compared to samples with OPC and diatomite. However, the samples prepared with diatomite show enhanced resilient modulus compared to those with hydrated lime and OPC

    Dielectric and conductivity relaxation in mixtures of glycerol with LiCl

    Full text link
    We report a thorough dielectric characterization of the alpha relaxation of glass forming glycerol with varying additions of LiCl. Nine salt concentrations from 0.1 - 20 mol% are investigated in a frequency range of 20 Hz - 3 GHz and analyzed in the dielectric loss and modulus representation. Information on the dc conductivity, the dielectric relaxation time (from the loss) and the conductivity relaxation time (from the modulus) is provided. Overall, with increasing ion concentration, a transition from reorientationally to translationally dominated behavior is observed and the translational ion dynamics and the dipolar reorientational dynamics become successively coupled. This gives rise to the prospect that by adding ions to dipolar glass formers, dielectric spectroscopy may directly couple to the translational degrees of freedom determining the glass transition, even in frequency regimes where usually strong decoupling is observed.Comment: 8 pages, 7 figure

    Resonant Microcantilevers for the Determination of the Loss Modulus of Thin Polymer Films

    Get PDF
    The increasing interest in polymer materials creates the need for accurate tools to characterize their mechanical properties. Due to energy dissipation in polymers during deformation, these materials exhibit viscoelastic behavior. Accurate determination of these viscoelastic properties and, more specifically, viscous losses, remains challenging and mainly unknown for thin polymer films. In this paper, a straightforward method to determine the loss modulus of organic materials using resonating microcantilevers has been developed. The extracted results for polyisobutylene show the variation of viscous losses over a large range of frequencies (7-350 kHz)
    corecore