13 research outputs found

    Protection architectures for multi-wavelength optical networks.

    Get PDF
    by Lee Chi Man.Thesis (M.Phil.)--Chinese University of Hong Kong, 2004.Includes bibliographical references (leaves 63-65).Abstracts in English and Chinese.Chapter CHAPTER 1 --- INTRODUCTION --- p.5Chapter 1.1 --- Background --- p.5Chapter 1.1.1 --- Backbone network - Long haul mesh network problem --- p.5Chapter 1.1.2 --- Access network ´ؤ Last mile problems --- p.8Chapter 1.1.3 --- Network integration --- p.9Chapter 1.2 --- SUMMARY OF INSIGHTS --- p.10Chapter 1.3 --- Contribution of this thesis --- p.11Chapter 1.4 --- Structure of the thesis --- p.11Chapter CHAPTER 2 --- PREVIOUS PROTECTION ARCHITECTURES --- p.12Chapter 2.1 --- Introduction --- p.12Chapter 2.2 --- Traditional physical protection architectures in metro area --- p.13Chapter 2.2.1 --- Self healing ring --- p.17Chapter 2.2.2 --- Some terminology in ring protection --- p.13Chapter 2.2.3 --- Unidirectional path-switched rings (UPSR) [17] --- p.13Chapter 2.2.4 --- Bidirectional line-switched rings (BLSR) [17] --- p.14Chapter 2.2.5 --- Ring interconnection and dual homing [17] --- p.16Chapter 2.3 --- Traditional physical protection architectures in access networks --- p.17Chapter 2.3.1 --- Basic architecture in passive optical networks --- p.17Chapter 2.3.2 --- Fault management issue in access networks --- p.18Chapter 2.3.3 --- Some protection architectures --- p.18Chapter 2.4 --- Recent protection architectures on a ccess networks --- p.21Chapter 2.4.1 --- Star-Ring-Bus architecture --- p.21Chapter 2.5 --- Concluding remarks --- p.22Chapter CHAPTER 3 --- GROUP PROTECTION ARCHITECTURE (GPA) FOR TRAFFIC RESTORATION IN MULTI- WAVELENGTH PASSIVE OPTICAL NETWORKS --- p.23Chapter 3.1 --- Background --- p.23Chapter 3.2 --- Organization of Chapter 3 --- p.24Chapter 3.3 --- Overview of Group Protection Architecture --- p.24Chapter 3.3.1 --- Network architecture --- p.24Chapter 3.3.2 --- Wavelength assignment --- p.25Chapter 3.3.3 --- Normal operation of the scheme --- p.25Chapter 3.3.4 --- Protection mechanism --- p.26Chapter 3.4 --- Enhanced GPA architecture --- p.27Chapter 3.4.1 --- Network architecture --- p.27Chapter 3.4.2 --- Wavelength assignment --- p.28Chapter 3.4.3 --- Realization of network elements --- p.28Chapter 3.4.3.1 --- Optical line terminal (OLT) --- p.28Chapter 3.4.3.2 --- Remote node (RN) --- p.29Chapter 3.4.3.3 --- Realization of optical network unit (ONU) --- p.30Chapter 3.4.4 --- Protection switching and restoration --- p.31Chapter 3.4.5 --- Experimental demonstration --- p.31Chapter 3.5 --- Conclusion --- p.33Chapter CHAPTER 4 --- A NOVEL CONE PROTECTION ARCHITECTURE (CPA) SCHEME FOR WDM PASSIVE OPTICAL ACCESS NETWORKS --- p.35Chapter 4.1 --- Introduction --- p.35Chapter 4.2 --- Single-side Cone Protection Architecture (SS-CPA) --- p.36Chapter 4.2.1 --- Network topology of SS-CPA --- p.36Chapter 4.2.2 --- Wavelength assignment of SS-CPA --- p.36Chapter 4.2.3 --- Realization of remote node --- p.37Chapter 4.2.4 --- Realization of optical network unit --- p.39Chapter 4.2.5 --- Two types of failures --- p.40Chapter 4.2.6 --- Protection mechanism against failure --- p.40Chapter 4.2.6.1 --- Multi-failures of type I failure --- p.40Chapter 4.2.6.2 --- Type II failure --- p.40Chapter 4.2.7 --- Experimental demonstration --- p.41Chapter 4.2.8 --- Power budget --- p.42Chapter 4.2.9 --- Protection capability analysis --- p.42Chapter 4.2.10 --- Non-fully-connected case and its extensibility for addition --- p.42Chapter 4.2.11 --- Scalability --- p.43Chapter 4.2.12 --- Summary --- p.43Chapter 4.3 --- Comparison between GPA and SS-CPA scheme --- p.43Chapter 4.1 --- Resources comparison --- p.43Chapter 4.2 --- Protection capability comparison --- p.44Chapter 4.4 --- Concluding remarks --- p.45Chapter CHAPTER 5 --- MUL 77- WA VELENGTH MUL TICAST NETWORK IN PASSIVE OPTICAL NETWORK --- p.46Chapter 5.1 --- Introduction --- p.46Chapter 5.2 --- Organization of this chapter --- p.47Chapter 5.3 --- Simple Group Multicast Network (SGMN) scheme --- p.47Chapter 5.3.1 --- Network design principle --- p.47Chapter 5.3.2 --- Wavelength assignment of SGMN --- p.48Chapter 5.3.3 --- Realization of remote node --- p.49Chapter 5.3.3 --- Realization of optical network unit --- p.50Chapter 5.3.4 --- Power budget --- p.51Chapter 5.4 --- A mulTI- wa velength a ccess network with reconfigurable multicast …… --- p.51Chapter 5.4.1 --- Motivation --- p.51Chapter 5.4.2 --- Background --- p.51Chapter 5.4.3 --- Network design principle --- p.52Chapter 5.4.4 --- Wavelength assignment --- p.52Chapter 5.4.5 --- Remote Node design --- p.53Chapter 5.4.6 --- Optical network unit design --- p.54Chapter 5.4.7 --- Multicast connection pattern --- p.55Chapter 5.4.8 --- Multicast group selection in OLT --- p.57Chapter 5.4.9 --- Scalability --- p.57Chapter 5.4.10 --- Experimental configuration --- p.58Chapter 5.4.11 --- Concluding remarks --- p.59Chapter CHAPTER 6 --- CONCLUSIONS --- p.60LIST OF PUBLICATIONS: --- p.62REFERENCES: --- p.6

    Domain/Multi-Domain Protection and Provisioning in Optical Networks

    Full text link
    L’évolution récente des commutateurs de sélection de longueurs d’onde (WSS -Wavelength Selective Switch) favorise le développement du multiplexeur optique d’insertionextraction reconfigurable (ROADM - Reconfigurable Optical Add/Drop Multiplexers) à plusieurs degrés sans orientation ni coloration, considéré comme un équipement fort prometteur pour les réseaux maillés du futur relativement au multiplexage en longueur d’onde (WDM -Wavelength Division Multiplexing ). Cependant, leur propriété de commutation asymétrique complique la question de l’acheminement et de l’attribution des longueur d’ondes (RWA - Routing andWavelength Assignment). Or la plupart des algorithmes de RWA existants ne tiennent pas compte de cette propriété d’asymétrie. L’interruption des services causée par des défauts d’équipements sur les chemins optiques (résultat provenant de la résolution du problème RWA) a pour conséquence la perte d’une grande quantité de données. Les recherches deviennent ainsi incontournables afin d’assurer la survie fonctionnelle des réseaux optiques, à savoir, le maintien des services, en particulier en cas de pannes d’équipement. La plupart des publications antérieures portaient particulièrement sur l’utilisation d’un système de protection permettant de garantir le reroutage du trafic en cas d’un défaut d’un lien. Cependant, la conception de la protection contre le défaut d’un lien ne s’avère pas toujours suffisante en termes de survie des réseaux WDM à partir de nombreux cas des autres types de pannes devenant courant de nos jours, tels que les bris d’équipements, les pannes de deux ou trois liens, etc. En outre, il y a des défis considérables pour protéger les grands réseaux optiques multidomaines composés de réseaux associés à un domaine simple, interconnectés par des liens interdomaines, où les détails topologiques internes d’un domaine ne sont généralement pas partagés à l’extérieur. La présente thèse a pour objectif de proposer des modèles d’optimisation de grande taille et des solutions aux problèmes mentionnés ci-dessus. Ces modèles-ci permettent de générer des solutions optimales ou quasi-optimales avec des écarts d’optimalité mathématiquement prouvée. Pour ce faire, nous avons recours à la technique de génération de colonnes afin de résoudre les problèmes inhérents à la programmation linéaire de grande envergure. Concernant la question de l’approvisionnement dans les réseaux optiques, nous proposons un nouveau modèle de programmation linéaire en nombres entiers (ILP - Integer Linear Programming) au problème RWA afin de maximiser le nombre de requêtes acceptées (GoS - Grade of Service). Le modèle résultant constitue celui de l’optimisation d’un ILP de grande taille, ce qui permet d’obtenir la solution exacte des instances RWA assez grandes, en supposant que tous les noeuds soient asymétriques et accompagnés d’une matrice de connectivité de commutation donnée. Ensuite, nous modifions le modèle et proposons une solution au problème RWA afin de trouver la meilleure matrice de commutation pour un nombre donné de ports et de connexions de commutation, tout en satisfaisant/maximisant la qualité d’écoulement du trafic GoS. Relativement à la protection des réseaux d’un domaine simple, nous proposons des solutions favorisant la protection contre les pannes multiples. En effet, nous développons la protection d’un réseau d’un domaine simple contre des pannes multiples, en utilisant les p-cycles de protection avec un chemin indépendant des pannes (FIPP - Failure Independent Path Protecting) et de la protection avec un chemin dépendant des pannes (FDPP - Failure Dependent Path-Protecting). Nous proposons ensuite une nouvelle formulation en termes de modèles de flots pour les p-cycles FDPP soumis à des pannes multiples. Le nouveau modèle soulève un problème de taille, qui a un nombre exponentiel de contraintes en raison de certaines contraintes d’élimination de sous-tour. Par conséquent, afin de résoudre efficacement ce problème, on examine : (i) une décomposition hiérarchique du problème auxiliaire dans le modèle de décomposition, (ii) des heuristiques pour gérer efficacement le grand nombre de contraintes. À propos de la protection dans les réseaux multidomaines, nous proposons des systèmes de protection contre les pannes d’un lien. Tout d’abord, un modèle d’optimisation est proposé pour un système de protection centralisée, en supposant que la gestion du réseau soit au courant de tous les détails des topologies physiques des domaines. Nous proposons ensuite un modèle distribué de l’optimisation de la protection dans les réseaux optiques multidomaines, une formulation beaucoup plus réaliste car elle est basée sur l’hypothèse d’une gestion de réseau distribué. Ensuite, nous ajoutons une bande pasiv sante partagée afin de réduire le coût de la protection. Plus précisément, la bande passante de chaque lien intra-domaine est partagée entre les p-cycles FIPP et les p-cycles dans une première étude, puis entre les chemins pour lien/chemin de protection dans une deuxième étude. Enfin, nous recommandons des stratégies parallèles aux solutions de grands réseaux optiques multidomaines. Les résultats de l’étude permettent d’élaborer une conception efficace d’un système de protection pour un très large réseau multidomaine (45 domaines), le plus large examiné dans la littérature, avec un système à la fois centralisé et distribué.Recent developments in the wavelength selective switch (WSS) technology enable multi-degree reconfigurable optical add/drop multiplexers (ROADM) architectures with colorless and directionless switching, which is regarded as a very promising enabler for future reconfigurable wavelength division multiplexing (WDM) mesh networks. However, its asymmetric switching property complicates the optimal routing and wavelength assignment (RWA) problem, which is NP-hard. Most of the existing RWA algorithms do not consider such property. Disruption of services through equipment failures on the lightpaths (output of RWA problem) is consequential as it involves the lost of large amounts of data. Therefore, substantial research efforts are needed to ensure the functional survivability of optical networks, i.e., the continuation of services even when equipment failures occur. Most previous publications have focused on using a protection scheme to guarantee the traffic connections in the event of single link failures. However, protection design against single link failures turns out not to be always sufficient to keep the WDM networks away from many downtime cases as other kinds of failures, such as node failures, dual link failures, triple link failures, etc., become common nowadays. Furthermore, there are challenges to protect large multi-domain optical networks which are composed of several singledomain networks, interconnected by inter-domain links, where the internal topological details of a domain are usually not shared externally. The objective of this thesis is to propose scalable models and solution methods for the above problems. The models enable to approach large problem instances while producing optimal or near optimal solutions with mathematically proven optimality gaps. For this, we rely on the column generation technique which is suitable to solve large scale linear programming problems. For the provisioning problem in optical networks, we propose a new ILP (Integer Linear Programming) model for RWA problem with the objective of maximizing the Grade of Service (GoS). The resulting model is a large scale optimization ILP model, which allows the exact solution of quite large RWA instances, assuming all nodes are asymmetric and with a given switching connectivity matrix. Next, we modify the model and propose a solution for the RWA problem with the objective of finding the best switching connectivity matrix for a given number of ports and a given number of switching connections, while satisfying/maximizing the GoS. For protection in single domain networks, we propose solutions for the protection against multiple failures. Indeed, we extent the protection of a single domain network against multiple failures, using FIPP and FDPP p-cycles. We propose a new generic flow formulation for FDPP p-cycles subject to multiple failures. Our new model ends up with a complex pricing problem, which has an exponential number of constraints due to some subtour elimination constraints. Consequently, in order to efficiently solve the pricing problem, we consider: (i) a hierarchical decomposition of the original pricing problem; (ii) heuristics in order to go around the large number of constraints in the pricing problem. For protection in multi-domain networks, we propose protection schemes against single link failures. Firstly, we propose an optimization model for a centralized protection scheme, assuming that the network management is aware of all the details of the physical topologies of the domains. We then propose a distributed optimization model for protection in multi-domain optical networks, a much more realistic formulation as it is based on the assumption of a distributed network management. Then, we add bandwidth sharing in order to reduce the cost of protection. Bandwidth of each intra-domain link is shared among FIPP p-cycles and p-cycles in a first study, and then among paths for link/path protection in a second study. Finally, we propose parallel strategies in order to obtain solutions for very large multi-domain optical networks. The result of this last study allows the efficent design of a protection scheme for a very large multi-domain network (45 domains), the largest one by far considered in the literature, both with a centralized and distributed scheme

    Foutbestendige toekomstige internetarchitecturen

    Get PDF

    Survivability in layered networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 195-204).In layered networks, a single failure at the lower (physical) layer may cause multiple failures at the upper (logical) layer. As a result, traditional schemes that protect against single failures may not be effective in layered networks. This thesis studies the problem of maximizing network survivability in the layered setting, with a focus on optimizing the embedding of the logical network onto the physical network. In the first part of the thesis, we start with an investigation of the fundamental properties of layered networks, and show that basic network connectivity structures, such as cuts, paths and spanning trees, exhibit fundamentally different characteristics from their single-layer counterparts. This leads to our development of a new crosslayer survivability metric that properly quantifies the resilience of the layered network against physical failures. Using this new metric, we design algorithms to embed the logical network onto the physical network based on multi-commodity flows, to maximize the cross-layer survivability. In the second part of the thesis, we extend our model to a random failure setting and study the cross-layer reliability of the networks, defined to be the probability that the upper layer network stays connected under the random failure events. We generalize the classical polynomial expression for network reliability to the layered setting. Using Monte-Carlo techniques, we develop efficient algorithms to compute an approximate polynomial expression for reliability, as a function of the link failure probability. The construction of the polynomial eliminates the need to resample when the cross-layer reliability under different link failure probabilities is assessed. Furthermore, the polynomial expression provides important insight into the connection between the link failure probability, the cross-layer reliability and the structure of a layered network. We show that in general the optimal embedding depends on the link failure probability, and characterize the properties of embeddings that maximize the reliability under different failure probability regimes. Based on these results, we propose new iterative approaches to improve the reliability of the layered networks. We demonstrate via extensive simulations that these new approaches result in embeddings with significantly higher reliability than existing algorithms.by Kayi Lee.Ph.D

    Resilient and Scalable Forwarding for Software-Defined Networks with P4-Programmable Switches

    Get PDF
    Traditional networking devices support only fixed features and limited configurability. Network softwarization leverages programmable software and hardware platforms to remove those limitations. In this context the concept of programmable data planes allows directly to program the packet processing pipeline of networking devices and create custom control plane algorithms. This flexibility enables the design of novel networking mechanisms where the status quo struggles to meet high demands of next-generation networks like 5G, Internet of Things, cloud computing, and industry 4.0. P4 is the most popular technology to implement programmable data planes. However, programmable data planes, and in particular, the P4 technology, emerged only recently. Thus, P4 support for some well-established networking concepts is still lacking and several issues remain unsolved due to the different characteristics of programmable data planes in comparison to traditional networking. The research of this thesis focuses on two open issues of programmable data planes. First, it develops resilient and efficient forwarding mechanisms for the P4 data plane as there are no satisfying state of the art best practices yet. Second, it enables BIER in high-performance P4 data planes. BIER is a novel, scalable, and efficient transport mechanism for IP multicast traffic which has only very limited support of high-performance forwarding platforms yet. The main results of this thesis are published as 8 peer-reviewed and one post-publication peer-reviewed publication. The results cover the development of suitable resilience mechanisms for P4 data planes, the development and implementation of resilient BIER forwarding in P4, and the extensive evaluations of all developed and implemented mechanisms. Furthermore, the results contain a comprehensive P4 literature study. Two more peer-reviewed papers contain additional content that is not directly related to the main results. They implement congestion avoidance mechanisms in P4 and develop a scheduling concept to find cost-optimized load schedules based on day-ahead forecasts

    Redundancy in Communication Networks for Smart Grids

    Get PDF
    Traditional electric power grids are currently undergoing fundamental changes: Representative examples are the increase in the penetration of volatile and decentralized renewable-energy sources and the emerging distributed energy-storage systems. These changes are not viable without the introduction of automation in grid monitoring and control, which implies the application of information and communication technologies (ICT) in power systems. Consequently, there is a transition toward smart grids. IEEE defines smart grid as follows: "The integration of power, communications, and information technologies for an improved electric power infrastructure serving loads while providing for an ongoing evolution of end-use applications" . The indispensable components of the future smart grids are the communication networks. Many well-established techniques and best practices, applied in other domains, are revisited and applied in new ways. Nevertheless, some gaps still need to be bridged due to the specific requirements of the smart-grid communication networks. Concretely, a challenging objective is to fulfill reliability and low-delay requirements over the wide-area networks, commonly used in smart grids. The main ``playground" for the work presented in this thesis is the smart-grid pilot of the EPFL campus. It is deployed on the operational 20kV20kV medium-voltage distribution network of the campus. At the time of the writing of this thesis, the real-time monitoring of this active distribution network has been already put in place, as the first step toward the introduction of control and protection. The monitoring infrastructure relies on a communication network that is a representative example of the smart-grid communication networks. Keeping all this in mind, in this thesis, the main topic that we focus on, is the assurance of data communication over redundant network-infrastructure in industrial environments. This thesis consists of two parts that correspond to the two aspects of the topic that we address. In the first part of the thesis, we evaluate existing, well-established, technologies and solutions in the context of the EPFL smart-grid pilot. We report on the architecture of the communication network that we built on our campus. In addition, we go into more detail by reporting on some of the characteristics of the devices used in the network. We also discuss security aspects of the MPLS Transport Profile (MPLS-TP) which is one of the proposed technologies in the context of smart grids. In the second part of this thesis, we propose new solutions. While designing our campus smart-grid network, we analyzed the imposed requirements and recognized the need for a solution for reliable packet delivery within stringent delay constraints over a redundant network-infrastructure. The existing solutions for exploiting network redundancy, such as the parallel redundancy protocol (PRP), are not viable for IP-layer wide-area networks, a key element of emerging smart grids. Other solutions (MPLS-TP for example) do not meet the stringent delay requirement. To address this issue, we present a transport-layer solution: the IP-layer parallel redundancy protocol (iPRP). In the rest of the thesis, we analyze the methods for implementing fail-independent paths that are fundamental for the optimal operation of iPRP, in SDN-based networks. We also evaluate the benefits of iPRP in wireless environments. We show that, with a help of iPRP, the performance of the communication based on the Wi-Fi technology can be significantly improved

    IP and ATM integration: A New paradigm in multi-service internetworking

    Get PDF
    ATM is a widespread technology adopted by many to support advanced data communication, in particular efficient Internet services provision. The expected challenges of multimedia communication together with the increasing massive utilization of IP-based applications urgently require redesign of networking solutions in terms of both new functionalities and enhanced performance. However, the networking context is affected by so many changes, and to some extent chaotic growth, that any approach based on a structured and complex top-down architecture is unlikely to be applicable. Instead, an approach based on finding out the best match between realistic service requirements and the pragmatic, intelligent use of technical opportunities made available by the product market seems more appropriate. By following this approach, innovations and improvements can be introduced at different times, not necessarily complying with each other according to a coherent overall design. With the aim of pursuing feasible innovations in the different networking aspects, we look at both IP and ATM internetworking in order to investigating a few of the most crucial topics/ issues related to the IP and ATM integration perspective. This research would also address various means of internetworking the Internet Protocol (IP) and Asynchronous Transfer Mode (ATM) with an objective of identifying the best possible means of delivering Quality of Service (QoS) requirements for multi-service applications, exploiting the meritorious features that IP and ATM have to offer. Although IP and ATM often have been viewed as competitors, their complementary strengths and limitations from a natural alliance that combines the best aspects of both the technologies. For instance, one limitation of ATM networks has been the relatively large gap between the speed of the network paths and the control operations needed to configure those data paths to meet changing user needs. IP\u27s greatest strength, on the other hand, is the inherent flexibility and its capacity to adapt rapidly to changing conditions. These complementary strengths and limitations make it natural to combine IP with ATM to obtain the best that each has to offer. Over time many models and architectures have evolved for IP/ATM internetworking and they have impacted the fundamental thinking in internetworking IP and ATM. These technologies, architectures, models and implementations will be reviewed in greater detail in addressing possible issues in integrating these architectures s in a multi-service, enterprise network. The objective being to make recommendations as to the best means of interworking the two in exploiting the salient features of one another to provide a faster, reliable, scalable, robust, QoS aware network in the most economical manner. How IP will be carried over ATM when a commercial worldwide ATM network is deployed is not addressed and the details of such a network still remain in a state of flux to specify anything concrete. Our research findings culminated with a strong recommendation that the best model to adopt, in light of the impending integrated service requirements of future multi-service environments, is an ATM core with IP at the edges to realize the best of both technologies in delivering QoS guarantees in a seamless manner to any node in the enterprise
    corecore