9,080 research outputs found

    Loop Quantum Gravity

    Get PDF
    The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. The research in loop quantum gravity forms today a vast area, ranging from mathematical foundations to physical applications. Among the most significative results obtained are: (i) The computation of the physical spectra of geometrical quantities such as area and volume; which yields quantitative predictions on Planck-scale physics. (ii) A derivation of the Bekenstein-Hawking black hole entropy formula. (iii) An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, overcompleteness of the loop basis, implementation of reality conditions) have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.Comment: Review paper written for the electronic journal `Living Reviews'. 34 page

    Oriented matroid theory and loop quantum gravity in (2+2) and eight dimensions

    Full text link
    We establish a connection between oriented matroid theory and loop quantum gravity in (2+2) (two time and two space dimensions) and 8-dimensions. We start by observing that supersymmetry implies that the structure constants of the real numbers, complex numbers, quaternions and octonions can be identified with the chirotope concept. This means, among other things, that normed divisions algebras, which are only possible in 1,2, 4 or 8-dimensions, are linked to oriented matroid theory. Therefore, we argue that the possibility for developing loop quantum gravity in 8-dimensions must be taken as important alternative. Moreover, we show that in 4-dimensions, loop quantum gravity theories in the (1+3) or (0+4) signatures are not the only possibilities. In fact, we show that loop quantum gravity associated with the (2+2)-signature may also be an interesting physical structure.Comment: 13 pages, Late

    Extended Loop Quantum Gravity

    Full text link
    We discuss constraint structure of extended theories of gravitation (also known as f(R) theories) in the vacuum selfdual formulation introduced in ref. [1].Comment: 7 pages, few typos correcte

    Relativistic Planck-scale polymer

    Full text link
    Polymer quantum mechanics has been studied as a simplified picture that reflects some of the key properties of Loop Quantum Gravity; however, while the fate of relativistic symmetries in Loop Quantum Gravity is still not established, it is usually assumed that the discrete polymer structure should lead to a breakdown of relativistic symmetries. We here focus for simplicity on a one-spatial-dimension polymer model and show that relativistic symmetries are deformed, rather than being broken. The specific type of deformed relativistic symmetries which we uncover appears to be closely related to analogous descriptions of relativistic symmetries in some noncommutative spacetimes. This also contributes to an ongoing effort attempting to establish whether the "quantum-Minkowski limit" of Loop Quantum Gravity is a noncommutative spacetime.Comment: 5 pages, no figures. v2: minor changes in Section I

    Introduction to Loop Quantum Gravity

    Full text link
    This article is based on the opening lecture at the third quantum geometry and quantum gravity school sponsored by the European Science Foundation and held at Zakopane, Poland in March 2011. The goal of the lecture was to present a broad perspective on loop quantum gravity for young researchers. The first part is addressed to beginning students and the second to young researchers who are already working in quantum gravity.Comment: 30 pages, 2 figures. arXiv admin note: substantial text overlap with arXiv:gr-qc/041005
    • …
    corecore