298 research outputs found

    Unsupervised Learning of Depth and Ego-Motion from Video

    Full text link
    We present an unsupervised learning framework for the task of monocular depth and camera motion estimation from unstructured video sequences. We achieve this by simultaneously training depth and camera pose estimation networks using the task of view synthesis as the supervisory signal. The networks are thus coupled via the view synthesis objective during training, but can be applied independently at test time. Empirical evaluation on the KITTI dataset demonstrates the effectiveness of our approach: 1) monocular depth performing comparably with supervised methods that use either ground-truth pose or depth for training, and 2) pose estimation performing favorably with established SLAM systems under comparable input settings.Comment: Accepted to CVPR 2017. Project webpage: https://people.eecs.berkeley.edu/~tinghuiz/projects/SfMLearner

    DeepSLAM: A Robust Monocular SLAM System with Unsupervised Deep Learning

    Get PDF
    In this paper, we propose DeepSLAM, a novel unsupervised deep learning-based visual Simultaneous Localization and Mapping (SLAM) system. The DeepSLAM training is fully unsupervised since it only requires stereo imagery instead of annotating ground-truth poses. Its testing takes a monocular image sequence as the input. Therefore, it is a monocular SLAM paradigm. DeepSLAM consists of several essential components, including Mapping-Net, Tracking-Net, Loop-Net and a graph optimization unit. Specifically, the Mapping-Net is an encoder and decoder architecture for describing the 3D structure of the environment while the Tracking-Net is a Recurrent Convolutional Neural Network (RCNN) architecture for capturing the camera motion. The Loop-Net is a pre-trained binary classifier for detecting loop closures. DeepSLAM can simultaneously generate pose estimate, depth map and outlier rejection mask. We evaluate its performance on various datasets, and find that DeepSLAM achieves good performance in terms of pose estimation accuracy, and is robust in some challenging scenes

    GANVO: Unsupervised Deep Monocular Visual Odometry and Depth Estimation with Generative Adversarial Networks

    Full text link
    In the last decade, supervised deep learning approaches have been extensively employed in visual odometry (VO) applications, which is not feasible in environments where labelled data is not abundant. On the other hand, unsupervised deep learning approaches for localization and mapping in unknown environments from unlabelled data have received comparatively less attention in VO research. In this study, we propose a generative unsupervised learning framework that predicts 6-DoF pose camera motion and monocular depth map of the scene from unlabelled RGB image sequences, using deep convolutional Generative Adversarial Networks (GANs). We create a supervisory signal by warping view sequences and assigning the re-projection minimization to the objective loss function that is adopted in multi-view pose estimation and single-view depth generation network. Detailed quantitative and qualitative evaluations of the proposed framework on the KITTI and Cityscapes datasets show that the proposed method outperforms both existing traditional and unsupervised deep VO methods providing better results for both pose estimation and depth recovery.Comment: ICRA 2019 - accepte

    Pose Graph Optimization for Unsupervised Monocular Visual Odometry

    Full text link
    Unsupervised Learning based monocular visual odometry (VO) has lately drawn significant attention for its potential in label-free leaning ability and robustness to camera parameters and environmental variations. However, partially due to the lack of drift correction technique, these methods are still by far less accurate than geometric approaches for large-scale odometry estimation. In this paper, we propose to leverage graph optimization and loop closure detection to overcome limitations of unsupervised learning based monocular visual odometry. To this end, we propose a hybrid VO system which combines an unsupervised monocular VO called NeuralBundler with a pose graph optimization back-end. NeuralBundler is a neural network architecture that uses temporal and spatial photometric loss as main supervision and generates a windowed pose graph consists of multi-view 6DoF constraints. We propose a novel pose cycle consistency loss to relieve the tensions in the windowed pose graph, leading to improved performance and robustness. In the back-end, a global pose graph is built from local and loop 6DoF constraints estimated by NeuralBundler and is optimized over SE(3). Empirical evaluation on the KITTI odometry dataset demonstrates that 1) NeuralBundler achieves state-of-the-art performance on unsupervised monocular VO estimation, and 2) our whole approach can achieve efficient loop closing and show favorable overall translational accuracy compared to established monocular SLAM systems.Comment: Accepted to ICRA'201
    • …
    corecore