2 research outputs found

    Learning in Real-Time Search: A Unifying Framework

    Full text link
    Real-time search methods are suited for tasks in which the agent is interacting with an initially unknown environment in real time. In such simultaneous planning and learning problems, the agent has to select its actions in a limited amount of time, while sensing only a local part of the environment centered at the agents current location. Real-time heuristic search agents select actions using a limited lookahead search and evaluating the frontier states with a heuristic function. Over repeated experiences, they refine heuristic values of states to avoid infinite loops and to converge to better solutions. The wide spread of such settings in autonomous software and hardware agents has led to an explosion of real-time search algorithms over the last two decades. Not only is a potential user confronted with a hodgepodge of algorithms, but he also faces the choice of control parameters they use. In this paper we address both problems. The first contribution is an introduction of a simple three-parameter framework (named LRTS) which extracts the core ideas behind many existing algorithms. We then prove that LRTA*, epsilon-LRTA*, SLA*, and gamma-Trap algorithms are special cases of our framework. Thus, they are unified and extended with additional features. Second, we prove completeness and convergence of any algorithm covered by the LRTS framework. Third, we prove several upper-bounds relating the control parameters and solution quality. Finally, we analyze the influence of the three control parameters empirically in the realistic scalable domains of real-time navigation on initially unknown maps from a commercial role-playing game as well as routing in ad hoc sensor networks

    Lookahead Pathologies for Single Agent Search

    No full text
    Admissible and consistent heuristic functions are usually preferred in single-agent heuristic search as they guarantee optimal solutions with complete search methods such as A* and IDA*. Larger problems, however, frequently make a complete search intractable due to space and/or time limitations. In particular, a path-planning agent in a realtime strategy game may need to take an action before its complete search has the time to finish. In such cases, incomplete search techniques (such as RTA*, SRTA*, RTDP, DTA*) can be used. Such algorithms conduct a limited ply lookahead and then evaluate the states envisioned using a heuristic function. The action selected on the basis of such evaluations can be suboptimal due to the incompleteness of search and inaccuracies in the heuristic. It is usually believed that deeper lookahead increases the chances of taking the optimal action. In this paper, we demonstrate that this is not necessarily the case, even when admissible and consistent heuristic functions are used
    corecore