3 research outputs found

    Long-Term Video Interpolation with Bidirectional Predictive Network

    Full text link
    This paper considers the challenging task of long-term video interpolation. Unlike most existing methods that only generate few intermediate frames between existing adjacent ones, we attempt to speculate or imagine the procedure of an episode and further generate multiple frames between two non-consecutive frames in videos. In this paper, we present a novel deep architecture called bidirectional predictive network (BiPN) that predicts intermediate frames from two opposite directions. The bidirectional architecture allows the model to learn scene transformation with time as well as generate longer video sequences. Besides, our model can be extended to predict multiple possible procedures by sampling different noise vectors. A joint loss composed of clues in image and feature spaces and adversarial loss is designed to train our model. We demonstrate the advantages of BiPN on two benchmarks Moving 2D Shapes and UCF101 and report competitive results to recent approaches.Comment: 5 pages, 7 figure

    W-Cell-Net: Multi-frame Interpolation of Cellular Microscopy Videos

    Full text link
    Deep Neural Networks are increasingly used in video frame interpolation tasks such as frame rate changes as well as generating fake face videos. Our project aims to apply recent advances in Deep video interpolation to increase the temporal resolution of fluorescent microscopy time-lapse movies. To our knowledge, there is no previous work that uses Convolutional Neural Networks (CNN) to generate frames between two consecutive microscopy images. We propose a fully convolutional autoencoder network that takes as input two images and generates upto seven intermediate images. Our architecture has two encoders each with a skip connection to a single decoder. We evaluate the performance of several variants of our model that differ in network architecture and loss function. Our best model out-performs state of the art video frame interpolation algorithms. We also show qualitative and quantitative comparisons with state-of-the-art video frame interpolation algorithms. We believe deep video interpolation represents a new approach to improve the time-resolution of fluorescent microscopy

    From Here to There: Video Inbetweening Using Direct 3D Convolutions

    Full text link
    We consider the problem of generating plausible and diverse video sequences, when we are only given a start and an end frame. This task is also known as inbetweening, and it belongs to the broader area of stochastic video generation, which is generally approached by means of recurrent neural networks (RNN). In this paper, we propose instead a fully convolutional model to generate video sequences directly in the pixel domain. We first obtain a latent video representation using a stochastic fusion mechanism that learns how to incorporate information from the start and end frames. Our model learns to produce such latent representation by progressively increasing the temporal resolution, and then decode in the spatiotemporal domain using 3D convolutions. The model is trained end-to-end by minimizing an adversarial loss. Experiments on several widely-used benchmark datasets show that it is able to generate meaningful and diverse in-between video sequences, according to both quantitative and qualitative evaluations
    corecore