202,572 research outputs found

    Deepr: A Convolutional Net for Medical Records

    Full text link
    Feature engineering remains a major bottleneck when creating predictive systems from electronic medical records. At present, an important missing element is detecting predictive regular clinical motifs from irregular episodic records. We present Deepr (short for Deep record), a new end-to-end deep learning system that learns to extract features from medical records and predicts future risk automatically. Deepr transforms a record into a sequence of discrete elements separated by coded time gaps and hospital transfers. On top of the sequence is a convolutional neural net that detects and combines predictive local clinical motifs to stratify the risk. Deepr permits transparent inspection and visualization of its inner working. We validate Deepr on hospital data to predict unplanned readmission after discharge. Deepr achieves superior accuracy compared to traditional techniques, detects meaningful clinical motifs, and uncovers the underlying structure of the disease and intervention space

    Portinari: A Data Exploration Tool to Personalize Cervical Cancer Screening

    Full text link
    Socio-technical systems play an important role in public health screening programs to prevent cancer. Cervical cancer incidence has significantly decreased in countries that developed systems for organized screening engaging medical practitioners, laboratories and patients. The system automatically identifies individuals at risk of developing the disease and invites them for a screening exam or a follow-up exam conducted by medical professionals. A triage algorithm in the system aims to reduce unnecessary screening exams for individuals at low-risk while detecting and treating individuals at high-risk. Despite the general success of screening, the triage algorithm is a one-size-fits all approach that is not personalized to a patient. This can easily be observed in historical data from screening exams. Often patients rely on personal factors to determine that they are either at high risk or not at risk at all and take action at their own discretion. Can exploring patient trajectories help hypothesize personal factors leading to their decisions? We present Portinari, a data exploration tool to query and visualize future trajectories of patients who have undergone a specific sequence of screening exams. The web-based tool contains (a) a visual query interface (b) a backend graph database of events in patients' lives (c) trajectory visualization using sankey diagrams. We use Portinari to explore diverse trajectories of patients following the Norwegian triage algorithm. The trajectories demonstrated variable degrees of adherence to the triage algorithm and allowed epidemiologists to hypothesize about the possible causes.Comment: Conference paper published at ICSE 2017 Buenos Aires, at the Software Engineering in Society Track. 10 pages, 5 figure

    DeepCare: A Deep Dynamic Memory Model for Predictive Medicine

    Full text link
    Personalized predictive medicine necessitates the modeling of patient illness and care processes, which inherently have long-term temporal dependencies. Healthcare observations, recorded in electronic medical records, are episodic and irregular in time. We introduce DeepCare, an end-to-end deep dynamic neural network that reads medical records, stores previous illness history, infers current illness states and predicts future medical outcomes. At the data level, DeepCare represents care episodes as vectors in space, models patient health state trajectories through explicit memory of historical records. Built on Long Short-Term Memory (LSTM), DeepCare introduces time parameterizations to handle irregular timed events by moderating the forgetting and consolidation of memory cells. DeepCare also incorporates medical interventions that change the course of illness and shape future medical risk. Moving up to the health state level, historical and present health states are then aggregated through multiscale temporal pooling, before passing through a neural network that estimates future outcomes. We demonstrate the efficacy of DeepCare for disease progression modeling, intervention recommendation, and future risk prediction. On two important cohorts with heavy social and economic burden -- diabetes and mental health -- the results show improved modeling and risk prediction accuracy.Comment: Accepted at JBI under the new name: "Predicting healthcare trajectories from medical records: A deep learning approach

    Dipole: Diagnosis Prediction in Healthcare via Attention-based Bidirectional Recurrent Neural Networks

    Full text link
    Predicting the future health information of patients from the historical Electronic Health Records (EHR) is a core research task in the development of personalized healthcare. Patient EHR data consist of sequences of visits over time, where each visit contains multiple medical codes, including diagnosis, medication, and procedure codes. The most important challenges for this task are to model the temporality and high dimensionality of sequential EHR data and to interpret the prediction results. Existing work solves this problem by employing recurrent neural networks (RNNs) to model EHR data and utilizing simple attention mechanism to interpret the results. However, RNN-based approaches suffer from the problem that the performance of RNNs drops when the length of sequences is large, and the relationships between subsequent visits are ignored by current RNN-based approaches. To address these issues, we propose {\sf Dipole}, an end-to-end, simple and robust model for predicting patients' future health information. Dipole employs bidirectional recurrent neural networks to remember all the information of both the past visits and the future visits, and it introduces three attention mechanisms to measure the relationships of different visits for the prediction. With the attention mechanisms, Dipole can interpret the prediction results effectively. Dipole also allows us to interpret the learned medical code representations which are confirmed positively by medical experts. Experimental results on two real world EHR datasets show that the proposed Dipole can significantly improve the prediction accuracy compared with the state-of-the-art diagnosis prediction approaches and provide clinically meaningful interpretation

    Contextual Motifs: Increasing the Utility of Motifs using Contextual Data

    Full text link
    Motifs are a powerful tool for analyzing physiological waveform data. Standard motif methods, however, ignore important contextual information (e.g., what the patient was doing at the time the data were collected). We hypothesize that these additional contextual data could increase the utility of motifs. Thus, we propose an extension to motifs, contextual motifs, that incorporates context. Recognizing that, oftentimes, context may be unobserved or unavailable, we focus on methods to jointly infer motifs and context. Applied to both simulated and real physiological data, our proposed approach improves upon existing motif methods in terms of the discriminative utility of the discovered motifs. In particular, we discovered contextual motifs in continuous glucose monitor (CGM) data collected from patients with type 1 diabetes. Compared to their contextless counterparts, these contextual motifs led to better predictions of hypo- and hyperglycemic events. Our results suggest that even when inferred, context is useful in both a long- and short-term prediction horizon when processing and interpreting physiological waveform data.Comment: 10 pages, 7 figures, accepted for oral presentation at KDD '1

    Modeling Interdependent and Periodic Real-World Action Sequences

    Full text link
    Mobile health applications, including those that track activities such as exercise, sleep, and diet, are becoming widely used. Accurately predicting human actions is essential for targeted recommendations that could improve our health and for personalization of these applications. However, making such predictions is extremely difficult due to the complexities of human behavior, which consists of a large number of potential actions that vary over time, depend on each other, and are periodic. Previous work has not jointly modeled these dynamics and has largely focused on item consumption patterns instead of broader types of behaviors such as eating, commuting or exercising. In this work, we develop a novel statistical model for Time-varying, Interdependent, and Periodic Action Sequences. Our approach is based on personalized, multivariate temporal point processes that model time-varying action propensities through a mixture of Gaussian intensities. Our model captures short-term and long-term periodic interdependencies between actions through Hawkes process-based self-excitations. We evaluate our approach on two activity logging datasets comprising 12 million actions taken by 20 thousand users over 17 months. We demonstrate that our approach allows us to make successful predictions of future user actions and their timing. Specifically, our model improves predictions of actions, and their timing, over existing methods across multiple datasets by up to 156%, and up to 37%, respectively. Performance improvements are particularly large for relatively rare and periodic actions such as walking and biking, improving over baselines by up to 256%. This demonstrates that explicit modeling of dependencies and periodicities in real-world behavior enables successful predictions of future actions, with implications for modeling human behavior, app personalization, and targeting of health interventions.Comment: Accepted at WWW 201
    • …
    corecore