726 research outputs found

    Long term Throughput and Approximate Capacity of Transmitter-Receiver Energy Harvesting Channel with Fading

    Full text link
    We first consider an energy harvesting channel with fading, where only the transmitter harvests energy from natural sources. We bound the optimal long term throughput by a constant for a class of energy arrival distributions. The proposed method also gives a constant approximation to the capacity of the energy harvesting channel with fading. Next, we consider a more general system where both the transmitter and the receiver employ energy harvesting to power themselves. In this case, we show that finding an approximation to the optimal long term throughput is far more difficult, and identify a special case of unit battery capacity at both the transmitter and the receiver for which we obtain a universal bound on the ratio of the upper and lower bound on the long term throughput.Comment: To appear in ICCS 2014, Macau in Nov. 201

    On Distributed Power Control for Uncoordinated Dual Energy Harvesting Links: Performance Bounds and Near-Optimal Policies

    Full text link
    In this paper, we consider a point-to-point link between an energy harvesting transmitter and receiver, where neither node has the information about the battery state or energy availability at the other node. We consider a model where data is successfully delivered only in slots where both nodes are active. Energy loss occurs whenever one node turns on while the other node is in sleep mode. In each slot, based on their own energy availability, the transmitter and receiver need to independently decide whether or not to turn on, with the aim of maximizing the long-term time-average throughput. We present an upper bound on the throughput achievable by analyzing a genie-aided system that has noncausal knowledge of the energy arrivals at both the nodes. Next, we propose an online policy requiring an occasional one-bit feedback whose throughput is within one bit of the upper bound, asymptotically in the battery size. In order to further reduce the feedback required, we propose a time-dilated version of the online policy. As the time dilation gets large, this policy does not require any feedback and achieves the upper bound asymptotically in the battery size. Inspired by this, we also propose a near-optimal fully uncoordinated policy. We use Monte Carlo simulations to validate our theoretical results and illustrate the performance of the proposed policies.Comment: 8 page

    Training Optimization for Energy Harvesting Communication Systems

    Full text link
    Energy harvesting (EH) has recently emerged as an effective way to solve the lifetime challenge of wireless sensor networks, as it can continuously harvest energy from the environment. Unfortunately, it is challenging to guarantee a satisfactory short-term performance in EH communication systems because the harvested energy is sporadic. In this paper, we consider the channel training optimization problem in EH communication systems, i.e., how to obtain accurate channel state information to improve the communication performance. In contrast to conventional communication systems, the optimization of the training power and training period in EH communication systems is a coupled problem, which makes such optimization very challenging. We shall formulate the optimal training design problem for EH communication systems, and propose two solutions that adaptively adjust the training period and power based on either the instantaneous energy profile or the average energy harvesting rate. Numerical and simulation results will show that training optimization is important in EH communication systems. In particular, it will be shown that for short block lengths, training optimization is critical. In contrast, for long block lengths, the optimal training period is not too sensitive to the value of the block length nor to the energy profile. Therefore, a properly selected fixed training period value can be used.Comment: 6 pages, 5 figures, Globecom 201

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Communicating Using an Energy Harvesting Transmitter: Optimum Policies Under Energy Storage Losses

    Full text link
    In this paper, short-term throughput optimal power allocation policies are derived for an energy harvesting transmitter with energy storage losses. In particular, the energy harvesting transmitter is equipped with a battery that loses a fraction of its stored energy. Both single user, i.e. one transmitter-one receiver, and the broadcast channel, i.e., one transmitter-multiple receiver settings are considered, initially with an infinite capacity battery. It is shown that the optimal policies for these models are threshold policies. Specifically, storing energy when harvested power is above an upper threshold, retrieving energy when harvested power is below a lower threshold, and transmitting with the harvested energy in between is shown to maximize the weighted sum-rate. It is observed that the two thresholds are related through the storage efficiency of the battery, and are nondecreasing during the transmission. The results are then extended to the case with finite battery capacity, where it is shown that a similar double-threshold structure arises but the thresholds are no longer monotonic. A dynamic program that yields an optimal online power allocation is derived, and is shown to have a similar double-threshold structure. A simpler online policy is proposed and observed to perform close to the optimal policy.Comment: Submitted to IEEE Transactions on Wireless Communications, August 201
    • …
    corecore